Real-Time object color Identification
Atharva Borawake, Nilima Kulkarni, Anshul Ghorse
DOI Number:
Color Histogram, Feature extraction, K-Nearest Neighbor (KNN)
The computer vision field is a rapidly growing field devoted to analyzing and understanding digital images. We can create computer vision projects through OpenCV. In OpenCV image processing processes such as image filtering, simple geometric photo transformation, color space transition, histograms, etc. are covered. Picture and real-time object color identification focus on OpenCV color identification through using the RGB model as well as the K-Nearest Neighbors Classification algorithm trained on r, g, b pixel values. Color identification in the image can be done through the RGB value of the target pixel as input and then calculates the distance, and the nearest color is chosen. From this method, we can identify 800 plus different colors from our datasets including the RGB value of each color. We conduct extraction of features in real-time color identification of objects to extract their RGB color Histogram attributes from training images and trained classification algorithm via RGB Color Histogram attributes. The KNN classifier analyzes the webcam frames and performs feature extraction and then shows the color.
Article Details
Unique Paper ID: 150658

Publication Volume & Issue: Volume 7, Issue 8

Page(s): 191 - 195
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews