Hybrid Approach for Optimizing Test Suite Based on GA & ACO
Author(s):
Khushboo Arora, Mamta Arora
Keywords:
Ant Colony Optimization, Genetic Algorithm, Optimization, Software Testing, Test Suite.
Abstract
Nowadays, Software testing is the most important part of a successful software product. It is a process with the intent of detecting as many errors in the software process. Software testing takes an input which executes the process and then produces an output. This output mainly depends upon the software testing. The quality and stability of a software is analyzed using software testing and is achieved by suitable test suite. Manual testing is a very difficult and expensive process and also takes a lot of time. The main problem of manual testing is the problem of code coverage, which is not performed at a regular interval. Thus there is a necessity to choose the best and minimized test suite which maximizes the fault coverage in minimum time. The paper presents a new hybrid approach for optimizing the software test suite by combining two main algorithms: Genetic algorithm and Ant Colony Optimization. Genetic algorithm, an optimization algorithm is based on natural evolution, which optimizes the solutions using different operators such as selection, crossover and mutation whereas Ant Colony Optimization algorithm is a meta-heuristic technique. The proposed methodology adopts the behaviour of ants and applies some genetic operator i.e. crossover operator to solve a problem. The paper also provides a comparison of the above hybrid technique with Genetic Algorithm and Ant Colony Optimization based on the number of test cases.
Article Details
Unique Paper ID: 143798

Publication Volume & Issue: Volume 3, Issue 2

Page(s): 65 - 69
Article Preview & Download


Share This Article

Conference Alert

NCSST-2021

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2021

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2021

Go To Issue



Call For Paper

Volume 8 Issue 4

Last Date 25 September 2021

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews

Contact Details

Telephone:6351679790
Email: editor@ijirt.org
Website: ijirt.org

Policies