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Abstract—The recent advances in real Quantum 

Computing have lent credibility and acclaim to the idea 

of using Parameterized Quantum Computing methods as 

hypotheses for Quantum-Classical Hybrid Machine 

Learning Systems. Quantum-Classical Hybrid systems 

are the next step towards comprehensive Quantum 

Enhanced Systems. They have already shown great 

promise and potential in solving supervised and 

generative learning tasks with recent works 

demonstrating their superiority in specialized Artificial 

Intelligence tasks as well. However, the largest impact 

that Quantum Advantage can bring about in present-day 

systems lies in optimizing the hardest and most complex 

parallel learning algorithms. From this perspective, this 

research compares three of the most challenging 

artificial intelligence algorithms that illustrate the 

leverage which can be obtained by harnessing the 

properties of quantum computing. In this paper, 

Quantum Enhanced Reinforcement Learning, Genetic 

Algorithms and Particle Swarm Optimization are 

explored with an emphasis on the applications of Particle 

Swarm Optimization.  

Index Terms—Quantum Computing, Particle Swarm 

Optimization, Machine Learning, Variational Quantum 

Algorithm, Quantum Reinforcement Learning, 

Quantum Genetic Algorithm. 

I. INTRODUCTION 

In the 1980s, quantum computing emerged as a field 

of study when researchers began to investigate 

computational models that incorporated principles 

from quantum mechanics [1]. Benioff and Deutsch, 

who worked on the concept of quantum Turing 

machines and universal quantum computation [2, 3], 

were among the pioneers in this field. Subsequent 

research has focused on the application of quantum 

computing to the simulation of quantum systems [4-

6]. The advancement of the discipline, however, was 

spurred by Peter Shor's 1994 discovery of an effective 

quantum method for determining the prime factors of 

composite integers, which exposed the weaknesses of 

conventional cryptography protocols [7]. Since then, 

the research of quantum algorithms has expanded to 

cover a variety of applications, such as search and 

optimization, machine learning, simulation of 

quantum systems, and cryptography [8]. Quantum 

computing has been a rapidly developing field for the 

past four decades, with many disciplines contributing 

to the study and implementation of quantum 

algorithms. Quantum computers are unique tools that 

offer significant computational power, particularly in 

fields with high computational demands. To 

successfully implement quantum algorithms, the 

smallest units of quantum information, called qubits, 

must be as reliable as classical bits. However, they 

must also be protected from noise that causes 

decoherence and be controllable by external agents. 

This control includes the ability to create entanglement 

between qubits and to perform measurement 

operations to extract the output of quantum 

computation. Quantum computing is a type of 

computing that uses quantum mechanics, a branch of 

physics, to store and process information. It has the 

potential to perform certain types of computation 

much faster than classical computers, which use bits to 

store and process information. In classical computers, 

a bit is a unit of information that can be either a 0 or a 

1. Quantum computers use quantum bits, or qubits, 

which can represent both a 0 and a 1 at the same time. 

This property, known as superposition, allows 

quantum computers to perform certain calculations 

much more quickly than classical computers. A 2n-

dimensional complex Hilbert space, or H = (C2)⊗n, 

can be used to represent a quantum system made up of 

n qubits. A vector |ψ⟩ ∈ H of unit norm  ⟨ψ|ψ⟩ = 1 is 

used to express the quantum state of the object, and the 

bra-ket notation has been used to describe vectors |ψ⟩, 

their conjugate transpose ⟨ψ|, and inner products ⟨ψ|ψ′⟩ 

in H. |0⟩ = (1, 0)T and |1⟩ = (0, 1)T represent single-
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qubit computational basis states, and their tensor 

products describe generic computational basis states, 

such as |10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0). A very intriguing 

use of upcoming quantum computers is hybrid 

quantum machine learning models, which generate a 

hypothesis family for a learning task using 

parametrized and data-dependent quantum 

computations and train them using a conventional 

optimization technique [9, 10]. These models, which 

include parametrized quantum circuits (PQCs) [11] as 

examples, have shown promise in classification [12–

16], generative modelling [18–19], and clustering [20] 

problems. Additionally, PQCs have shown learning 

advantages in tasks that were artificially created under 

the principles of complexity theory [21–24]. 

. 

II. QUANTUM TECHNIQUES IN PSO 

A. Variational Quantum Algorithms (VQA) 

A key tactic to deal with the limitations such as the 

limited numbers of qubits and noise processes that 

limit circuit depth is the use of variational quantum 

algorithms (VQAs), which train a parameterized 

quantum circuit using a classical optimizer. VQAs 

appear to be the best option for getting quantum 

advantage because they have already been proposed 

for nearly all applications that researchers have 

thought of for quantum computers.  

 

Fig.1 Diagrammatic Representation of a Variational 

Quantum Algorithm (VQA). [10] 

 

The Fig. 1 describes the diagrammatic representation 

of a Variational Quantum Algorithm (VQA). A VQA 

workflow can be divided into four main components: 

a) the objective function O that encodes the problem 

to be solved; b) the parameterized quantum circuit 

(PQC) U, which variables θ are tuned to minimise the 

objective; c) the measurement scheme, which 

performs the basis changes and measurements needed 

to compute expectation values that are used to evaluate 

the objective; and d) the classical optimizer that 

minimizes the objective. The PQC can be defined 

heuristically, following hardware-inspired ansätze, or 

designed from the knowledge about the problem 

Hamiltonian H. Inputs of a VQA are the circuit ansatz 

U(θ) and the initial parameter values θ0. Outputs 

include optimized parameter values θ∗ and the 

minimum of the objective. 

B. Quantum Reinforcement Learning (QRL) 

Hybrid quantum machine learning models that 

combine classical optimization algorithms with 

quantum computations have shown promising 

application for near-term quantum computers [9, 10]. 

These models use parameterized and data-dependent 

quantum computations to define a hypothesis family 

for a specific learning task. For example, parametrized 

quantum circuits (PQCs) [11] have been successful in 

solving classification [12-16], generative modelling 

[18, 19] and clustering [20] problems, and have 

demonstrated learning advantages in artificially 

constructed tasks [14, 21], some of which are based on 

complexity-theoretic assumptions [21-24]. 

Reinforcement learning (RL) is a field that could 

greatly benefit from the use of a powerful hypothesis 

family, as seen with the improvement in learning 

performance provided by deep neural networks 

(DNNs) in RL [25]. At the core of RL algorithms is a 

PQC that takes the agent's state in the environment 

(e.g., a NumPy array) as input and outputs a vector of 

expectation values. These expectation values are then 

processed to create the agent's policy or approximate 

Q-values. In this way, PQCs serve a similar role to 

deep neural networks in modern deep RL algorithms. 

One common way to encode an input vector in a PQC 

is through the use of single-qubit rotations, where the 

rotation angles are controlled by the components of the 

input vector. To create a highly expressive model, 

these single-qubit encodings are not performed just 

once, but are "re-uploaded" multiple times and 

interlaid with variational gates. The layout of such a 

PQC is depicted in Fig.2. 

A way to further enhance the expressivity and 

trainability of data re-uploading PQCs is to use 

trainable input-scaling parameters λ for each encoding 

gate of the PQC, and trainable observable weights w 

at its output. 
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Fig.2 Layout of a Parameterized Quantum Circuit 

interlayed with variational gates. [17] 

C. Quantum Genetic Algorithms (QGA) 

Quantum genetic algorithms (QGAs) were first 

introduced in 1996 by Narayanan and Moore, and have 

been used to solve the Travelling Salesman Problem 

(TSP) with great success [26]. QGAs, which are based 

on the principles of genetic algorithms, have 

demonstrated significant advantages over traditional 

genetic algorithms in terms of efficiency, speed of 

convergence, global optimization capability, and 

robustness, even with small populations [27, 28]. In 

QGAs, genetic code is represented using a quantum 

state vector, and evolution of the chromosome is 

achieved through the use of quantum logic gates. 

However, there are still some limitations to 

conventional QGAs that require further exploration. 

The three parts of the genetic algorithm need to be 

specified and then suitable inputs to be selected in 

order to show a proof-of-concept for a quantum-

assisted genetic algorithm. 

Recombination: To generate two new individuals, this 

recombination procedure takes two individuals, 

randomly chooses a connected cluster of spins in 

which the individuals differ, then flips this cluster in 

each individual.  

Mutation: To mutate a state S, a reverse anneal is 

performed which is initialised at state S. This reverse 

anneal applies a transverse field to evolve the classical 

starting state into a quantum superposition of states, 

then removes the transverse field to settle on a new 

classical state.  

Selection: For selection, truncation selection is used; 

i.e., simply the best N individuals at the end of each 

generation is kept. This has the advantage of 

simplicity, but it can lead to loss of population 

diversity. Quantum-assisted genetic algorithm can be 

described by the following pseudocode:  

population = N random states  

FOR generation = 1 TO num_generations DO  

   mutate each individual in population with     

   probability mutation_rate  

   add the mutated states to population  

   randomly match the individuals to make  

   recombination_rate × |population| pairs  

   recombine each pair using an isoenergetic cluster    

   move to make 2 new offspring  

   add the offspring to population  

BREAKIF the algorithm has reached a stopping 

criterion,     

   (e.g., by timing out or reaching a certain energy)  

   discard individuals from population to maintain      

   the desired population size of N  

END FOR 

 

Fig.3 Example of recombination on a 2D lattice. [29] 

Fig.3 gives an example of recombination on a 2D 

lattice via isoenergetic cluster move. The two “parent” 

individuals (left) are chosen and their symmetric 

difference (xor for binary states) is considered 

(middle). From the symmetric difference, a variable in 

which the two inputs differ is selected uniformly at 

random (circled) and its connected component (dashed 

and shaded region) specifies the cluster of variables to 

flip. To obtain the child individuals (right), the 

variables in this cluster are flipped in each of the parent 

individuals. 

D. Quantum Particle Swarm Optimization (QPSO) 

In 1995, researchers began working on ways to 

improve the performance of the particle swarm 

optimization (PSO) algorithm [30, 31]. However, Van 

den Bergh [32] demonstrated that PSO is not a global 

optimization algorithm. To address this issue, Sun et 

al. [33] combined quantum theory with PSO to create 

the quantum-behaved particle swarm optimization 

(QPSO) algorithm. The Quantum Particle Swarm 

Optimization (QPSO) algorithm is an optimization 

algorithm that uses a population of particles to search 

for the global minimum or maximum of an objective 

function. The algorithm is inspired by the behaviour of 

swarms of birds or bees, where each individual particle 

is guided by its own experience and the collective 

experience of the group. The PSO is based on the 

concept of dividing the population of particles into 
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teams and allowing the teams to evolve and compete 

with each other. Each particle belongs to a team, and 

the global best position of each team is used to update 

the velocities and positions of the particles in the 

team. A velocity updating function updates the 

velocity of the particle based on a combination of the 

personal best position and the global best position. The 

personal best position is the best position that the 

particle has encountered so far, and the global best 

position is the best position that has been found by any 

particle in the population. The position updating 

function is then used to update the position of the 

particle based on the updated velocity. This allows the 

particle to move in the direction and at the magnitude 

determined by the velocity. These functions are 

typically used in combination with a stopping 

criterion, which determines when the algorithm should 

terminate. The stopping criteria may be based on the 

number of iterations, the time taken, or the quality of 

the solutions found. Once the stopping criteria is met, 

the algorithm returns the global best position as the 

final solution to the optimization problem. The 

velocities and positions of the particles in the Quantum 

Particle Swarm Optimization (QPSO) algorithm are 

adjusted based on a combination of their personal best 

positions, the global best position, and their current 

velocities and positions. This allows the particles to 

move towards the most promising areas of the search 

space and to converge towards the optimal solution to 

the optimization problem. The velocity and position of 

a particle can be calculated from the following 

equation. 

 

(i) v[i][j] = w * v[i][j] + c1 * r1 * (p[i][j] - x[i][j]) 

 + c2 * r2 * (g[j] - x[i][j]) + c3 * r3 * (g[j] - 

 x[i][j]) 

 

(ii) x[i][j] = x[i][j] + v[i][j] 

In this update rule, v[i][j] and x[i][j] represent the 

velocity and position of the i-th particle at the j-th 

dimension, respectively. w is the inertia weight, which 

determines the influence of the previous velocity on 

the current velocity. p[i][j] is the personal best position 

of the i-th particle at the j-th dimension. g[j] is the 

global best position at the j-th dimension. c1, c2, and 

c3 are constants that determine the influence of the 

personal best position, the global best position, and the 

teamwork evolutionary strategy on the velocity, 

respectively. r1, r2, and r3 are random weights that are 

used to add a degree of randomness to the update rule. 

The c3 term in the update rule represents the influence 

of the teamwork evolutionary strategy on the velocity. 

In the Quantum Particle Swarm Optimization (QPSO) 

algorithm, each particle calculates its attraction point 

as a weighted average of its own historical optimal 

position and the global best position of the group. 

However, this calculation has two drawbacks: 

(i) Each particle's position depends on the 

historical optimal position of the group, in addition to 

its own learning experience. This leads to a rapid 

decline in diversity in large groups, reducing the 

algorithm's ability to solve complex multi-peak 

optimization problems. 

(ii) The distribution space of each particle's 

attraction point decreases during the evolution of the 

algorithm. The particles are confined to a rectangle 

defined by vertices p[i][j] and g[i][j]. As the algorithm 

progresses, the function approaches the global best. 

This also means that the algorithm may become 

trapped in a local optimum in the final stages. 

The development of the Quantum Particle Swarm 

Optimization (QPSO) algorithm by Sun et al. in [33] 

aimed to improve the performance of the Particle 

Swarm Optimization (PSO) algorithm by combining it 

with quantum theory. QPSO has been shown to be 

effective in finding global optimal solutions in the 

search space, and has been demonstrated to improve 

the standard PSO algorithm on various benchmark 

functions. While QPSO is able to find the global 

optimal solution in the case of infinite searching 

iterations, this is not realistic in practical problems, as 

optimization algorithms are only allowed a limited 

number of iterations to find the optimal solution. 

 

III. OBSERVATIONS OF QT FOR PSO 

In the coming years, the integration of quantum 

computing into artificial intelligence is expected to 

drive rapid development in related research areas like 

machine learning. This is because quantum computing 

offers the potential for faster and more effective 

algorithms. For example, Zhaokai et al. [50] 

implemented a quantum support vector machine 

algorithm for an optical character recognition problem 

using a 4-qubit processor and the NMR technique with 

13C-iodotrifluoroethylene and a spectrometer at 306 

K. Their results showed the potential for quantum 

computing to improve the performance of machine 
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learning algorithms. Looking ahead, researchers are 

already working towards the physical realization of 

quantum computers with 50-100 qubits, as 

demonstrated by Veldhorst et al., [51] which will 

provide the necessary hardware to build a quantum 

computer. As these technologies continue to advance, 

even more impressive developments are expected to 

be seen in the field of artificial intelligence and 

machine learning. For instance, the study by Farhi et 

al. [12] showed that higher resolution input and a more 

powerful model, Classical (Full) model, made 

classification problems easier for the CNN. 

Interestingly, a classical model with similar power 

(~32 parameters), Classical (Fair) model, was also 

able to achieve a similar accuracy albeit in a fraction 

of the time. This result highlights the importance of 

exploring and optimizing the trade-offs between 

computational resources and model complexity in the 

design of machine learning algorithms. 

 
Fig.4 Accuracy Comparison of Quantum, Full 

Classical, and Fair Classical Neural Networks. [12] 

Fig.4 depicts a comparison of accuracy among a 

Quantum Neural Network, a Full Classical Neural 

Network, and a Fair Classical Neural Net with similar 

power (~32 parameters) to that of the Quantum Neural 

Network. The scale denotes the level of precision with 

which the models were able to classify the given data. 

The closer the value is to 1.0, the higher the accuracy 

of the model. 

Benchmarking environments from OpenAI Gym 

(Greg Brockman et al., 2019) [34], for which good and 

simple DNN policies are known, were considered in a 

numerical investigation. In these environments, it was 

demonstrated that PQC policies could achieve 

comparable performance. Inspired by the 

classification task studied by Vojtech Havlicek et al. 

[14], which was conjectured to be classically hard by 

the authors, analogous RL environments were 

constructed. In these environments, an empirical 

learning advantage of PQC policies over standard 

DNN policies used in deep RL was shown. 

Additionally, RL environments with a provable gap in 

performance between a family of PQC policies and 

any efficient classical learner were constructed. These 

environments were based on the work of Yunchao Liu 

et al. [23] and involved the embedding of the discrete 

logarithm problem (DLP) into a learning setting. The 

DLP, which can be solved by Shor's celebrated 

quantum algorithm (Peter W. Shor, [35]), is widely 

believed to be classically hard to solve (Manuel Blum 

and Silvio Micali, [36]). Recently, several works have 

explored hybrid quantum approaches for 

reinforcement learning (RL). Chen et al. [37] and 

Lockwood and Si [38] trained PQC-based agents in 

classical RL environments using a value-based 

approach, in which PQCs were used as value-function 

approximators instead of direct policies. These works 

tested their learning agents on OpenAI Gym 

environments, but did not achieve sufficiently good 

performance according to the Gym specifications. 

Skolik et al. [39] showed that, using some of the design 

choices for PQCs in RL described in our work, such as 

data re-uploading circuits with trainable observable 

weights and input scaling parameters, a value-based 

approach can be used to solve these environments. Wu 

et al. [41] introduced an actor-critic approach to 

quantum RL, using both a PQC actor (or policy) and a 

PQC critic (or value-function approximator). These 

were trained in quantum environments that provide a 

quantum state to the agent, which then responds with 

a continuous classical action, making it a very 

different learning setting to ours. Jerbi et al. [42] also 

described a hybrid quantum-classical algorithm for 

value-based RL, but used energy-based neural 

networks (e.g., deep and quantum Boltzmann 

machines) as function-approximation models rather 

than PQCs. This research presents an alternative 

approach to leveraging quantum effects in the design 

of QRL agents compared to earlier approaches such as 

those by Dong et al. [43], Paparo et al. [44], Dunjko et 

al. [45], Crawford et al. [46], and Neukart et al. [47], 

which are mainly based on Grover's search algorithm 

or quantum annealers to speed up sampling routines. 

Quantum computers, such as IBM's quantum 

processor, are currently available for experimentation 
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through cloud computing platforms. However, even 

though quantum evolutionary algorithms (QGAs) are 

inspired by quantum computing principles, they are 

usually performed on classical computers. 

Researchers believe that this will change once QGAs 

are designed and implemented on quantum computers. 

This would allow for faster research on higher-order 

QGAs (Nowotniak, R. et al., [53]), QGAs with 

entanglement (Choy, C.K. et al., [54]), and hybrid 

QGAs with quantum optimization algorithms (Duan, 

H.B. et al., [55]). To make this transition, it is 

important to train future computer scientists in the 

fundamentals of quantum mechanics as mentioned by 

Mermin, N.D., in the 2003 study. The implementation 

of quantum algorithms will lead to a significant 

increase in the use of quantum evolutionary algorithms 

in various fields, including the analysis of cancer 

microarray data (Sardana, M. et al., [57]) and classical 

engineering optimization problems (Mani, A. and 

Patvardhan, C., [58]), as well as in artificial 

intelligence (Draa, A. et al., [59]) and artificial life 

(Alvarez-Rodriguez, U. et al., [60]). Lahoz-Beltra in 

the 2008 study explained how in the future, quantum 

computing may also revolutionize our understanding 

of Darwinism. In the meantime, current software and 

hardware technologies can be utilized, such as the 

NVIDIA CUDA platform and the Matlab GPU library 

(Montiel, O. et al., [62]), to design more efficient 

QGAs. Florian Neukart et al., 2018 developed QGAs 

based on Grover's search algorithm (Lov K Grover, 

[48]) or quantum annealers (Mark W Johnson et al., 

[49]) to improve sampling routines. Searching for the 

optimal subset of features is a difficult optimization 

problem, according to research by Blum and Langley 

in 1997 [63]. To solve this problem, various methods 

have been developed, which can be divided into 

classical and metaheuristic methods, as stated by Cotta 

and Moscato in 2003 [64]. In their study, the authors 

have focused on metaheuristic methods, which use a 

powerful mechanism to find better solutions, in 

contrast to heuristics which simply suggest solutions 

without ensuring that they are the best ones, as shown 

by Zhao et al. in 2013 [65]. There are many 

metaheuristic algorithms used in feature selection, 

such as genetic algorithms (GA), clonal selection 

algorithm (CSA), ant colony optimization (ACO), and 

particle swarm optimization (PSO). PSO is a relatively 

new metaheuristic, but it has been demonstrated to be 

simple and effective compared to other methods, 

according to Zhao et al. [65]. Despite its effectiveness, 

it is important to continue improving this method. 

V.  CONCLUSION 

In this paper the various quantum techniques for 

optimization were studied and it has been observed 

that a lot of potential is there for the improvement and 

use of quantum swam particle optimization. Since it is 

a niche area, the experimental research needs to be 

done in implementing the techniques to actual 

optimization problems. More improvements are 

needed in the existing techniques too. The authors 

have taken this step ahead for development of a 

methodology for the implementation which can be 

discussed further once the performance analysis is 

done and the results are reported.  
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