
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142754 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 257

MEMORY MANAGEMENT IN C
Puneet Saini, Ria Arora

Dronacharya College of Engineering
Haryana

Abstract :- Abstract-Manual memory
management for dynamic memory allocation in
the C programming language is what is referred
to as dynamic memory allocation.
There are two ways of allocating memory
allocated in C, ie, by declaring the variables and
by explicitly requesting space.
We have discussed variable declaration in other
lectures, but here we will describe requesting
dynamic memory allocation and memory
management.

Space is allocated for a pointer by C whenever a
pointer is declared.
For example: char *p;
Four consecutive bytes in memory are allocated

which are associated with the variable p. Pointer
to char is declared to be the type of pointer p.
However, initialization of memory location does
not happen, so it may contain garbage.
Initialising the pointer at the time it is declared is
usually a good idea. Its function is to reduce the
chances of a random value in p to be used as a
memory address. A pointer must be pointing to a
valid area of memory before we can actually use
it. The function malloc is used to request a
pointer to a block of memory and calloc is used to
request an array of zero-value initialized blocks.

I. INTRODUCTION
There are various functions in C for memory
allocation and management, and these functions are
found in the stdlib library.
malloc and calloc functions are used to reserve space
in the memory. realloc is for moving a reserved
block of memory to another allocation of different
dimensions. free function is used for releasing space
back to C. In clear words:

o To allocate space for an array in memory
we use calloc()

o To allocate a memory block we use
malloc()

o To reallocate a memory block with specific
size realloc() is used

o To de-allocate previously allocated
memory we use free()

II. METHODOLOGY
A. malloc() Function:

During the execution of a program certain amount of
memory is allocated to it with the help of malloc
function. A block of memory from the heap is
requested by the malloc function. The operating
system will reserve the requested amount of memory
if the request is granted. The user must return the
memory to the operating system by calling the
function free, if it is not required anymore.
An amount of memory with size of 32 bits or 4 bytes
is asked for by the malloc statement. A NULL is
returned if there is insufficient memory available.
This is done by the malloc function. A block of
memory is allocated, ie, it is reserved, if and only if
the request is granted. The pointer variable places on
itself the address of the reserved block.
The return value of NULL is checked for by the if
statement. A message is printed and the program
stops only if the return value equals NULL. A
problem is interpreted if the return value of the
program equals one. Another relief to the user is that
he can make use of structures in a malloc statement.
The structure may be used with or without a typedef
statement.
SYNTAX:
ptr=(cast-type*)malloc(byte-size)
If we look at the dynamic memory functions, there
are more functions of the stdlib.h library that the user
can use to allocate dynamic memory. Four dynamic
memory functions that can be found in the stdlib.h
library are as follows:

B. calloc() Function:

The term calloc stands for "contiguous allocation".
malloc() allocates single block of memory whereas
calloc() allocates multiple blocks of memory each of
same size and sets all bytes to zero. This is the only
difference between calloc() and malloc() function.

Storage to variable is allocated using the calloc
function while the program is running.This is done
by writing calloc(num,size). Two arguments are

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142754 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 258

taken by this function which specify the number of
elements to be reserved, and the size of each element
in bytes and it allocates memory block equivalent to
num * size . A pointer is returned by the function to
the beginning of the allocated storage area in
memory. The main difference between malloc and
calloc function is that calloc initializes all bytes in
the allocation block to zero and the allocated
memory may/may not be contiguous.Space for
dynamic arrays is reserved by calloc().

SYNTAX:
void * calloc (size_t n, size_t size);
The size in bytes of one element to the second
argument is specified by the number of elements in
the first argument. On successful partitioning, the
address is returned, whereas NULL is returned on
failure.
The parameters of the calloc() function are:

 nitems- It is the number of elements to be
allocated.

 size- It is the size of elements.

C. relloc() Function:
Reallocation of a memory block with a specific new
size is done by the realloc() function. The size of the
memory block pointed to by the pointer is changed
to the given size in bytes on calling the realloc()
function. It is also responsible for the expansion and
reduction of the amount of memory.
It is possible that the function moves the memory
block to a new location. In this way the function will
return this new location. The value of the new
portion is indeterminate if the size of the requested
block is larger than the previous block.
Even if the block is moved to a new location, the
content of the memory block is preserved up to the
lesser of the new and old sizes. The value of the
newly allocated portion is indeterminate if the
new size is larger.
The function will behave exactly like the function
malloc() if the pointer is NULL. It will assign a new
block of a size in bytes and will return a pointer to
it.
The memory that was previously allocated is freed
as if a call of the function free() was given if the size
is 0. It will return a NULL pointer in such a case.
SYNTAX
void * realloc (void * ptr, size_t size);
The realloc() function will return a pointer to the
reallocated memory block. A NULL pointer is
returned if the function fails.

D. free() Function:
The argument free() specifies the address of a
dynamically allocated area. We can free the space
using this function. When memory is allocated with
either malloc() or calloc(), it is taken from the
dynamic memory pool that is available to your
program. This pool is finite and is sometimes called
the heap. When a program finishes using a particular
block of dynamically allocated memory, we should
deallocate, or free, the memory to make it available
for future use. We use free() function to free
memory that was allocated dynamically.
SYNTAX:
void free(void *ptr);

This function releases the memory pointed to by ptr.
The memory must have been allocated with
malloc(), calloc(), or realloc(). No change happens if
ptr is NULL.

CONCLUSION
We don't always know how much memory we will
need to set aside at compile time. Imagine
processing a data file (a series of calories burnt, say),
where the number of records in the file isn't fixed.
We could have as few as 10 records or as many as
100000. If we want to read all that data into memory
to process it, we won't know how much memory to
allocate until we read the file. And finally, dynamic
memory allows us to build containers that can grow
and shrink as we add or remove data, such as lists,
trees, queues, etc. We could even build our own real
"string" data type that can grow as we append
characters to it (similar to the string type in C++).

III. REFERENCES
 https://www.cs.cf.ac.uk/Dave/C/node11.ht

ml

 https://en.wikipedia.org/wiki/C_dynamic_
memory_allocation

 https://en.wikipedia.org/wiki/C_(program
ming_language)

 https://en.wikipedia.org/wiki/Static_memo
ry_allocation

 https://en.wikipedia.org/wiki/Memory_ma
nagement#DYNAMIC

 https://en.wikibooks.org/wiki/C_Program
ming/Memory_management

