
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142734 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 402

Thread (computing)
Gajendra singh

Abstract— In computer science, a thread of
execution is the smallest sequence of programmed
instructions that can be managed independently by
a scheduler, which is typically a part of the
operating system. The implementation of threads
and processes differs between operating systems,
but in most cases a thread is a component of a
process. Multiple threads can exist within the same
process, executing concurrently (one starting
before others finish) and share resources such as
memory, while different processes do not share
these resources. In particular, the threads of a
process share its instructions (executable code) and
its context (the values of its variables at any given
moment).
On a single processor, multithreading is generally
implemented by time slicing (as in multitasking),
and the central processing unit (CPU) switches
between different software threads. This context
switching generally happens frequently enough
that the user perceives the threads or tasks as
running at the same time (in parallel). On a
multiprocessor or multi-core system, multiple
threads can be executed in parallel (at the same
instant), with every processor or core executing a
separate thread simultaneously; on a processor or
core with hardware threads, separate software
threads can also be executed concurrently by
separate hardware threads.

1. Multithreading
Multithreading is mainly found in multitasking
operating systems. Multithreading is a widespread
programming and execution model that allows
multiple threads to exist within the context of a single
process. These threads share the process's resources,
but are able to execute independently. The threaded
programming model provides developers with a useful
abstraction of concurrent execution. Multithreading
can also be applied to a single process to enable
parallel execution on a multiprocessing system.
Multithreaded applications have the following
advantages:

 Responsiveness: multithreading can allow an
application to remain responsive to input. In
a single-threaded program, if the main
execution thread blocks on a long-running
task, the entire application can appear to
freeze. By moving such long-running tasks to
a worker thread that runs concurrently with
the main execution thread, it is possible for
the application to remain responsive to user
input while executing tasks in the
background. On the other hand, in most cases
multithreading is not the only way to keep a
program responsive, with non-blocking I/O
and/or Unix signals being available for
gaining similar results.

 Faster execution: this advantage of a
multithreaded program allows it to operate
faster on computer systems that have
multiple CPUs or one or more multi-core
CPUs, or across a cluster of machines,
because the threads of the program naturally
lend themselves to parallel execution,
assuming sufficient independence (that they
do not need to wait for each other).

 Lower resource consumption: using threads,
an application can serve multiple clients
concurrently using fewer resources than it
would need when using multiple process
copies of itself. For example, the Apache
HTTP server uses thread pools: a pool of
listener threads for listening to incoming
requests, and a pool of server threads for
processing those requests.

2. Thread vs. Process
Threads differ from traditional multitasking operating
system processes in that:

 processes are typically independent, while
threads exist as subsets of a process

 processes carry considerably more state
information than threads, whereas multiple
threads within a process share process state
as well as memory and other resources

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142734 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 403

 processes have separate address spaces,
whereas threads share their address space

 processes interact only through system-
provided inter-process communication
mechanisms

 context switching between threads in the
same process is typically faster than context
switching between processes.

Systems such as Windows NT and OS/2 are said to
have "cheap" threads and "expensive" processes; in
other operating systems there is not so great a
difference except the cost of an address space switch
which on some architectures (notably x86) results in a
translation look aside buffer (TLB) flush.

3. Scheduling
Operating systems schedule threads either
preemptively or cooperatively. Preemptive
multithreading is generally considered the superior
approach, as it allows the operating system to
determine when a context switch should occur. The
disadvantage of preemptive multithreading is that the
system may make a context switch at an inappropriate
time, causing lock convoy, priority inversion or other
negative effects, which may be avoided by cooperative
multithreading. Cooperative multithreading, on the
other hand, relies on the threads themselves to
relinquish control once they are at a stopping point.
This can create problems if a thread is waiting for a
resource to become available.
Until the early 2000s, most desktop computers had
only one single-core CPU, with no support for
hardware threads, although threads were still used on
such computers because switching between threads
was generally still quicker than full-process context
switches. In 2002, Intel added support for
simultaneous multithreading to the Pentium 4
processor, under the name hyper-threading; in 2005,
they introduced the dual-core Pentium D processor
and AMD introduced the dual-core Athlon 64 X2
processor.
Processors in embedded systems, which have higher
requirements for real-time behaviors, might support
multithreading by decreasing the thread-switch time,
perhaps by allocating a dedicated register file for each
thread instead of saving/restoring a common register
file.

4. Reference
https://en.wikipedia.org/wiki/Thread_(computing)

