
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142726 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 261

ASP.NET
Komal

Dronacharya College of Engineering
Haryana

ASP.net?
ASP.NET is a web development platform, which
provides a programming model, a comprehensive
software infrastructure and various services required
to build up robust web applications for PC, as well
as mobile devices. ASP.NET is an open-
source[2] server-side Web application
framework designed for Web development to
produce dynamic Web pages. It was developed
by Microsoft to allow programmers to build
dynamic web sites, web applications and web
services.
It was first released in January 2002 with version 1.0
of the .NET Framework, and is the successor to
Microsoft's Active Server Pages (ASP)
technology.ASP.NET works on top of the HTTP
protocol, and uses the HTTP commands and policies
to set a browser-to-server bilateral communication
and cooperation.ASP.NET is a part of Microsoft
.Net platform. ASP.NET applications are compiled
codes, written using the extensible and reusable
components or objects present in .Net framework.
These codes can use the entire hierarchy of classes
in .Net framework.
The .Net Framework family also includes two
versions for mobile or embedded device use. A
reduced version of the framework, the .NET
Compact Framework, is available on Windows CE
platforms, including Windows Mobile devices such
as smartphones. Additionally, the .NET Micro
Framework is targeted at severely resource-
constrained devices.

Characteristics of Asp.Net Pages

 Directives

 User controls

 Custom Controls

 Rendering Techniques

 State management

 Application

 Session state

 Performance

ASP.NET Web Forms Model

ASP.NET web forms extend the event-driven model
of interaction to the web applications. The browser
submits a web form to the web server and the server
returns a full markup page or HTML page in
response.
All client side user activities are forwarded to the
server for stateful processing. The server processes
the output of the client actions and triggers the
reactions.
Now, HTTP is a stateless protocol. ASP.NET
framework helps in storing the information
regarding the state of the application, which consists
of:

 Page state

 Session state
The page state is the state of the client, i.e., the
content of various input fields in the web form. The
session state is the collective information obtained
from various pages the user visited and worked with,
i.e., the overall session state. To clear the concept,
let us take an example of a shopping cart.
User adds items to a shopping cart. Items are
selected from a page, say the items page, and the
total collected items and price are shown on a
different page, say the cart page. Only HTTP cannot
keep track of all the information coming from
various pages. ASP.NET session state and server
side infrastructure keeps track of the information
collected globally over a session.
The ASP.NET runtime carries the page state to and
from the server across page requests while
generating ASP.NET runtime codes, and
incorporates the state of the server side components
in hidden fields.
This way, the server becomes aware of the overall
application state and operates in a two-tiered
connected way.
The ASP.NET Component Model
The ASP.NET component model provides various
building blocks of ASP.NET pages. Basically it is an
object model, which describes:

 Server side counterparts of almost all
HTML elements or tags, such as <form>
and <input>.

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142726 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 262

 Server controls, which help in developing
complex user-interface. For example, the
Calendar control or the Gridview control.

ASP.NET is a technology, which works on the .Net
framework that contains all web-related
functionalities. The .Net framework is made of an
object-oriented hierarchy. An ASP.NET web
application is made of pages. When a user requests
an ASP.NET page, the IIS delegates the processing
of the page to the ASP.NET runtime system.
The ASP.NET runtime transforms the .aspx page
into an instance of a class, which inherits from the
base class page of the .Net framework. Therefore,
each ASP.NET page is an object and all its
components i.e., the server-side controls are also
objects.
ASP.NET life cycle specifies, how:

 ASP.NET processes pages to produce
dynamic output

 The application and its pages are
instantiated and processed

 ASP.NET compiles the pages dynamically
The ASP.NET life cycle could be divided into two
groups:

 Application Life Cycle

 Page Life Cycle
ASP.NET Application Life Cycle
The application life cycle has the following stages:

 User makes a request for accessing
application resource, a page. Browser
sends this request to the web server.

 A unified pipeline receives the first request
and the following events take place:

o An object of the class
ApplicationManager is created.

o An object of the class
HostingEnvironment is created to
provide information regarding the
resources.

o Top level items in the application
are compiled.

 Response objects are created. The
application objects such as HttpContext,
HttpRequest and HttpResponse are created
and initialized.

 An instance of the HttpApplication object
is created and assigned to the request.

 The request is processed by the
HttpApplication class. Different events are
raised by this class for processing the
request.

The page life cycle phases are:

 Initialization

 Instantiation of the controls on the page

 Restoration and maintenance of the state

 Execution of the event handler codes

 Page rendering
Understanding the page cycle helps in writing codes
for making some specific thing happen at any stage
of the page life cycle. It also helps in writing custom
controls and initializing them at right time, populate
their properties with view-state data and run control
behavior code.
Following are the different stages of an ASP.NET
page:

 Page request - When ASP.NET gets a
page request, it decides whether to parse
and compile the page, or there would be a
cached version of the page; accordingly the
response is sent.

 Starting of page life cycle - At this stage,
the Request and Response objects are set.
If the request is an old request or post back,
the IsPostBack property of the page is set
to true. The UICulture property of the page
is also set.

 Page initialization - At this stage, the
controls on the page are assigned unique ID
by setting the UniqueID property and the
themes are applied. For a new request,
postback data is loaded and the control
properties are restored to the view-state
values.

 Page load - At this stage, control properties
are set using the view state and control state
values.

 Validation - Validate method of the
validation control is called and on its
successful execution, the IsValid property
of the page is set to true.

 Postback event handling - If the request is
a postback (old request), the related event
handler is invoked.

 Page rendering - At this stage, view state
for the page and all controls are saved. The
page calls the Render method for each
control and the output of rendering is
written to the OutputStream class of the
Response property of page.

 Unload - The rendered page is sent to the
client and page properties, such as
Response and Request, are unloaded and
all cleanup done.

ASP.NET Page Life Cycle Events

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142726 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 263

At each stage of the page life cycle, the page raises
some events, which could be coded. An event
handler is basically a function or subroutine, bound
to the event, using declarative attributes such as
Onclick or handle.
Following are the page life cycle events:

 PreInit - PreInit is the first event in page
life cycle. It checks the IsPostBack
property and determines whether the page
is a postback. It sets the themes and master
pages, creates dynamic controls, and gets
and sets profile property values. This event
can be handled by overloading the
OnPreInit method or creating a
Page_PreInit handler.

 Init - Init event initializes the control
property and the control tree is built. This
event can be handled by overloading the
OnInit method or creating a Page_Init
handler.

 Init Complete - InitComplete event allows
tracking of view state. All the controls turn
on view-state tracking.

 Load View State - LoadViewState event
allows loading view state information into
the controls.

 Load Post Data - During this phase, the
contents of all the input fields are defined
with the <form> tag are processed.

 Pre Load - PreLoad occurs before the post
back data is loaded in the controls. This
event can be handled by overloading the
OnPreLoad method or creating a
Page_PreLoad handler.

 Load - The Load event is raised for the
page first and then recursively for all child
controls. The controls in the control tree are
created. This event can be handled by
overloading the OnLoad method or
creating a Page_Load handler.

 Load Complete - The loading process is
completed, control event handlers are run,
and page validation takes place. This event
can be handled by overloading the
OnLoadComplete method or creating a
Page_LoadComplete handler

 PreRender - The PreRender event occurs
just before the output is rendered. By
handling this event, pages and controls can
perform any updates before the output is
rendered.

 PreRender Complete - As the PreRender
event is recursively fired for all child
controls, this event ensures the completion
of the pre-rendering phase.

 Save State Complete - State of control on
the page is saved. Personalization, control
state and view state information is saved.
The HTML markup is generated. This
stage can be handled by overriding the
Render method or creating a Page_Render
handler.

 UnLoad - The UnLoad phase is the last
phase of the page life cycle. It raises the
UnLoad event for all controls recursively
and lastly for the page itself. Final cleanup
is done and all resources and references,
such as database connections, are freed.
This event can be handled by modifying the
OnUnLoad method or creating a
Page_UnLoad handler.

Projects and Solutions
A typical ASP.NET application consists of many
items: the web content files (.aspx), source files (.cs
files), assemblies (.dll and .exe files), data source
files (.mdb files), references, icons, user controls and
miscellaneous other files and folders. All these files
that make up the website are contained in a Solution.
When a new website is created. VB2008
automatically creates the solution and displays it in
the solution explorer.
Solutions may contain one or more projects. A
project contains content files, source files, and other
files like data sources and image files. Generally, the
contents of a project are compiled into an assembly
as an executable file (.exe) or a dynamic link library
(.dll) file.
Typically a project contains the following content
files:

 Page file (.aspx)

 User control (.ascx)

 Web service (.asmx)

 Master page (.master)

 Site map (.sitemap)

 Website configuration file (.config)
Building and Running a Project
You can execute an application by:

 Selecting Start

 Selecting Start Without Debugging from
the Debug menu,

 pressing F5

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142726 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 264

 Ctrl-F5
The program is built meaning, the .exe or the .dll
files are generated by selecting a command from the
Build menu.

REFERENCE

 https://en.wikipedia.org/wiki/ASP.NET

 http://blog.spec-india.com/characteristics-
of-asp-net-pages

 https://kirandn.wordpress.com/about/chara
cteristics-of-asp-net/

 http://www.microsoft.com/technet/prodtec
hnol/WindowsServer2003/Library/IIS/ad2
a22b9-135c-432a-bc9f-
c67f074242b7.mspx?mfr=true

 http://www.tutorialspoint.com/asp.net/asp.
net_environment_setup.htm

