
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142696 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 120

THE C PREPROCESSOR

Mayank Yadav

Department Of Computer Science and Engineering,

Dronacharya College of Engineering, Gurgaon

Abstract- In today’s generation, millions are spent on

developing softwares, and a number of them are made

on c/c++ language. The C Preprocessor is not part of the

compiler, but is a separate step in the compilation

process. In simplistic terms, a C Preprocessor is just a

text substitution tool and they instruct compiler to do

required pre-processing before actual compilation.

We'll refer to the C Preprocessor as the CPP.

Index Terms- preprocessor, compiler

I. INTRODUCTION

All preprocessor commands begin with a pound

symbol (#). It must be the first nonblank character,

and for readability, a preprocessor directive should

begin in first column. Following section lists down

all important preprocessor directives:

Directive Description

#define Substitutes a preprocessor macro

#include Inserts a particular header from another file

#undef Undefines a preprocessor macro

#ifdef Returns true if this macro is defined

#ifndef Returns true if this macro is not defined

#if Tests if a compile time condition is true

#else The alternative for #if

#elif #else an #if in one statement

#endif Ends preprocessor conditional

#error Prints error message on stderr

#pragma Issues special commands to the compiler,

using a standardized method

Preprocessors Examples

Analyze the following examples to understand

various directives.

#define MAX_ARRAY_LENGTH 20

This directive tells the CPP to replace instances of

MAX_ARRAY_LENGTH with 20. Use #define for

constants to increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell the CPP to get stdio.h from

System Libraries and add the text to the current

source file. The next line tells CPP to get myheader.h

from the local directory and add the content to the

current source file.

#undef FILE_SIZE

#define FILE_SIZE 42

This tells the CPP to undefine existing FILE_SIZE

and define it as 42.

#ifndef MESSAGE

 #define MESSAGE "You wish!"

#endif

This tells the CPP to define MESSAGE only if

MESSAGE isn't already defined.

#ifdef DEBUG

 /* Your debugging statements here */

#endif

This tells the CPP to do the process the statements

enclosed if DEBUG is defined. This is useful if you

pass the -DDEBUG flag to gcc compiler at the time

of compilation. This will define DEBUG, so you can

turn debugging on and off on the fly during

compilation.

Predefined Macros

ANSI C defines a number of macros. Although each

one is available for your use in programming, the

predefined macros should not be directly modified.

Macro Description

__DATE__ The current date as a character

literal in "MMM DD YYYY" format

__TIME__ The current time as a character

literal in "HH:MM:SS" format

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142696 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 121

__FILE__ This contains the current filename

as a string literal.

__LINE__ This contains the current line

number as a decimal constant.

__STDC__ Defined as 1 when the compiler

complies with the ANSI standard.

Let's try the following example:

#include <stdio.h>

main()

{

 printf("File :%s\n", __FILE__);

 printf("Date :%s\n", __DATE__);

 printf("Time :%s\n", __TIME__);

 printf("Line :%d\n", __LINE__);

 printf("ANSI :%d\n", __STDC__);

}

When the above code in a file test.c is compiled and

executed, it produces the following result:

File :test.c

Date :Jun 2 2012

Time :03:36:24

Line :8

ANSI :1

Preprocessor Operators

The C preprocessor offers following operators to help

you in creating macros:

Macro Continuation (\)

A macro usually must be contained on a single line.

The macro continuation operator is used to continue a

macro that is too long for a single line. For example:

#define message_for(a, b) \

 printf(#a " and " #b ": We love you!\n")

Stringize (#)

The stringize or number-sign operator ('#'), when

used within a macro definition, converts a macro

parameter into a string constant. This operator may

be used only in a macro that has a specified argument

or parameter list. For example:

#include <stdio.h>

#define message_for(a, b) \

 printf(#a " and " #b ": We love you!\n")

int main(void)

{

 message_for(Carole, Debra);

 return 0;

}

When the above code is compiled and executed, it

produces the following result:

Carole and Debra: We love you!

Token Pasting (##)

The token-pasting operator (##) within a macro

definition combines two arguments. It permits two

separate tokens in the macro definition to be joined

into a single token. For example:

#include <stdio.h>

#define tokenpaster(n) printf ("token" #n " = %d",

token##n)

int main(void)

{

 int token34 = 40;

 tokenpaster(34);

 return 0;

}

When the above code is compiled and executed, it

produces the following result:

token34 = 40

How it happened, because this example results in the

following actual output from the preprocessor:

printf ("token34 = %d", token34);

This example shows the concatenation of token##n

into token34 and here we have used both stringize

and token-pasting.

The defined() Operator

The preprocessor defined operator is used in constant

expressions to determine if an identifier is defined

using #define. If the specified identifier is defined,

the value is true (non-zero). If the symbol is not

defined, the value is false (zero). The defined

operator is specified as follows:

#include <stdio.h>

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142696 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 122

#if !defined (MESSAGE)

 #define MESSAGE "You wish!"

#endif

int main(void)

{

 printf("Here is the message: %s\n", MESSAGE);

 return 0;

}

When the above code is compiled and executed, it

produces the following result:

Here is the message: You wish!

Parameterized Macros

One of the powerful functions of the CPP is the

ability to simulate functions using parameterized

macros. For example, we might have some code to

square a number as follows:

int square(int x) {

 return x * x;

}

We can rewrite above code using a macro as follows:

#define square(x) ((x) * (x))

Macros with arguments must be defined using the

#define directive before they can be used. The

argument list is enclosed in parentheses and must

immediately follow the macro name. Spaces are not

allowed between and macro name and open

parenthesis. For example:

#include <stdio.h>

#define MAX(x,y) ((x) > (y) ? (x) : (y))

int main(void)

{

 printf("Max between 20 and 10 is %d\n", MAX(10,

20));

 return 0;

}

When the above code is compiled and executed, it

produces the following result:

Max between 20 and 10 is 20

REFERENCES

The c programming language by Brain

W.Kernighan,Dennis M.ritchie

