A Note on the Secrecy Capacity of the Multi-antenna Wiretap Channel

KARAN LEHKRA, ANIL, VIKAS

DRONACHARYA COLLEGE OF ENGINEERING

Abstract: Recently, the secrecy capacity of the multi-antenna wiretap channel was characterized by Khisti and Wornell [1] using a Sato-like argument. This note presents an alternative characterization using a channel enhancement argument. This characterization relies on an extremal entropy inequality recently proved in the context of multi-antenna broadcast channels, and is directly built on the physical intuition regarding the optimal transmission strategy in this communication scenario.

I INTRODUCTION

Consider a multi-antenna wiretap channel with nt transmit antennas and nr and ne receive antennas at the legitimate receiver and the eavesdropper, respectively:

\[
\begin{align*}
y_r[m] &= H_r x[m] + w_r[m] \\
y_e[m] &= H_e x[m] + w_e[m]
\end{align*}
\] (1)

where \(H_r \in \mathbb{R}^{nr \times nt} \) and \(H_e \in \mathbb{R}^{ne \times nt} \) are the channel matrices associated with the legitimate receiver and the eavesdropper. The channel matrices \(H_r \) and \(H_e \) are assumed to be fixed during the entire transmission and are known to all three terminals. The additive noise \(w_r[m] \) and \(w_e[m] \) are white Gaussian vectors with zero mean and are independent across the time index \(m \). The channel input satisfies a total power constraint

\[
\frac{1}{n} \sum_{m=1}^{n} \|x[m]\|^2 \leq P
\] (2)

The secrecy capacity is defined as the maximum rate of communication such that the information can be decoded arbitrarily reliably at the legitimate receiver but not at the eavesdropper.

\[
C = \max \{ I(U;Y_r) - I(U;Y_e) \}
\] (3)

For a discrete memoryless wiretap channel \(P(Y_r,Y_e|X) \), a single-letter expression for the secrecy capacity was obtained by Csiszár and Körner [2] and can be written as

\[
C = \max \{ I(U;Y_r) - I(U;Y_e) \}
\] (3)

\(P(U,X) \)

where \(U \) is an auxiliary random variable over a certain alphabet that satisfies the Markov relation \(U - X - (Y_r,Y_e) \). Moreover, (3) extends to continuous alphabet cases with power constraint, so the problem of characterizing the secrecy capacity of the multi-antenna wiretap channel reduces to evaluating (3) for the specific channel model (1).

Note that evaluating (3) involves solving a functional, nonconvex optimization problem. Solving optimization problems of this type usually requires nontrivial techniques and strong inequalities. Indeed, for the single-antenna case \((nt = nr = ne = 1) \), the capacity expression (3) was successfully evaluated by Leung and Hellman [3] using a result of Wyner [4] on the degraded wiretap channel and the celebrated entropy-power inequality [5, Cha. 16.7]. (Alternatively, it can also be evaluated using a classical result from estimation theory via a relationship between mutual information and minimum mean-squared error estimation [6].)

Unfortunately, the same approach does not extend to the multi-antenna case, as the latter, in its general form, belongs to the class of nondegraded wiretap channels. The problem of characterizing the secrecy capacity of the multi-antenna wiretap channel remained open until the recent work of Khisti and Wornell [1].

In [1], Khisti and Wornell followed an indirect approach to evaluate the capacity expression (3) for
the multi-antenna wiretap channel. Key to their evaluation is the following genie-aided upper bound

\[
(I(U;X) - I(U;Y_e)) \leq I(U;Y_r,Y_e) - I(U;X) \\
(I(U;X) - I(U;Y_e)) \leq I(U;Y_r,Y_e) - I(U;X) \\
(I(U;X) - I(U;Y_e)) \leq I(U;X) \\
(I(U;X) - I(U;Y_e)) \leq I(U;X) \\
(I(U;X) - I(U;Y_e)) \leq I(U;X)
\]

where (5) follows from the Markov chain \(U \rightarrow X \rightarrow (Y_r, Y_e) \), and (6) follows from the trivial inequality \(I(X; Y_r, Y_e | U) \geq I(X; Y_e | U) \). Khisti and Wornell [1] further noticed that the original objective of optimization \(I(U; Y_r) - I(U; Y_e) \) depends on the channel transition probability \(P(Y_r, Y_e | X) \) only through the marginals \(P(Y_r | X) \) and \(P(Y_e | X) \), whereas the upper bound \(I(X; Y_r | Y_e) \) does depend on the joint conditional \(P(Y_r, Y_e | X) \). A good upper bound on the secrecy capacity is thus contrived as

\[
C = \max_{P(U,X)} \left[I(U; Y_r) - I(U; Y_e) \right] \leq \min_{P(Y_r, Y_e | X) \in \mathcal{D}} \max_{P(X)} I(X; Y_r | Y_e) = \max_{P(X)} \min_{P(Y_r, Y_e | X) \in \mathcal{D}} I(X; Y_r | Y_e) \tag{8}
\]