
© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 954

Design and Implementation of Reconfigurable Placement

Technique in Soc

Abisha.N1, Mr.R.Ramesh., M.E 2

1PG scholar

2Assistant Professor

Abstract—One of the most crucial processes for design

closure is placement for very-large-scale integrated

(VLSI) circuits. By equating the analytical placement

problem to the process of training a neural network, we

provide a revolutionary GPU-accelerated placement

framework called DREAMPlace. DREAMPlace, which

is built on top of the widely used deep learning

framework PyTorch, can outperform the state-of-the-art

multithreaded placer RePlAce in terms of global

placement speed without sacrificing quality by about 40

percent. We think that our effort will pave the way for

tackling old EDA issues using modern hardware and

software for AI.

Index Terms— GPU, GP, LG, NVIDIA Tesla V100 GPU,

Pytorch

I. INTRODUCTION

In the VLSI design flow, placement is a crucial yet

time-consuming step. Its effectiveness greatly affects

subsequent steps in the flow, including routing and

post-layout optimisation, as it establishes the

placements of standard cells in the actual layout. In

addition to providing a fairly precise assessment of

routed wirelength and congestion, a placement

solution is also very helpful in directing earlier stages,

such as logic synthesis. To complete a design,

commercial design flows frequently use multiple core

placement engines. Placement takes hours for complex

designs since it requires extensive numerical

optimisation, which slows down design iterations.

Because of this, extremely quick yet good placement

is always preferred.

Analytic placement is the current state of the art for

VLSI placement [1]-[15]. It basically solves non-

linear optimization problems. Analytical placement

can produce high-quality solutions, but it is also

known to be relatively slow [11], [13], [14]. Here is a

brief introduction to the analytical placement problem.

Suppose the circle is described as a hypergraph H =

(V, E). where V denotes the set of vertices (cells) and

E denotes the set of hyperedges (nets). Let x,y be the

cell location. The goal of analytical placement is to

minimize route length and place non-overlapping cells

in the layout. Analytical placement can be roughly

divided into quadratic placement and nonlinear

placement. Square placement solves the problem by

repeating an unconstrained length minimization step

and a crude justification or propagation step [10]–[13].

The wire length minimization step typically uses a

quadratic wire length model to minimize the total wire

length regardless of overlap between cells.

The coarse-grained legalization step eliminates

duplication based on a heuristic approach without

explicitly considering the cost of wire length. By

repeating these two steps, the cells can be dispersed

step by step. At the same time, the cost of cable length

is minimized. Nonlinear placement solves the

placement problem directly using nonlinear

optimization techniques [1]–[9], [12].

It formulates a nonlinear optimization problem with a

density-constrained wire length goal. By relaxing the

target density constraint, a gradient descent-based

approach can be employed. I am looking for a quality

solution. This article will focus on nonlinear

placement approaches, as many commercial tools such

as Cadence Innovus [5] and Synopsys IC Compiler [1]

employ nonlinear placement approaches. To speed up

placement, existing parallelization efforts are mainly

aimed at multithreaded CPUs with partitioning [6],

[10], [7]. As the number of threads increases, global

placement quickly saturates speed by about a factor of

5, and typically degrades quality by 2-6%. Kong et al.

We investigated GPU acceleration for analytical

deployment [22].

They combined clustering and declustering with

nonlinear placement optimization. By parallelizing the

nonlinear placement part, we observed an average

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 955

speedup of 15x in global placement with less than 1%

quality loss. Lynn et al. proposed a GPU-accelerated

technique for wire length gradient calculation and area

accumulation [23], but their experiments were not

considered. Real-world operations such as density cost

calculations and validation with real-world analytical

placement flows were lacking. Moreover, current

deployment research faces challenges due to the lack

of well-maintained public frameworks and significant

development effort, raising the bar for systematic

validation of new algorithms. The key contributions

are summarized as follows.

We take a totally new perspective of making an

analogy between placement and deep learning, and

build an opensource generic analytical placement

framework that runs on both CPU and GPU platforms

developed with modern deep learning toolkits.

A variety of gradient-descent solvers are provided,

such as Nesterov’s method, conjugate gradient

method, and Adam [25], with the help from deep

learning toolkit.

We propose efficient GPU implementations of key

kernels in analytical placement like wirelength and

density computation.

We demonstrate around 40× speedup in global

placement without quality degradation of the entire

placement flow over multi-threaded RePlAce

implementations. More specifically, a design with one

million cells finishes in one minute even with

legalization. The framework maintains nearly linear

scalability with industrial designs up to 10-million

cells.

The source code is published on Github1. To clarify,

translating the placement problem into a deep learning

problem is aimed at solving placement using a toolkit.

This is orthogonal to using deep learning models for

deployment. The rest of the work is organized as

follows.

Section II describes background and motivation.

Section III describes the detailed implementation.

Section IV presents the results.

Section V completes the work.

2. PRELIMINARIES

Analytical Placement

Analytical deployment typically consists of three

steps: Global Housing (GP), Legalization (LG), and

Detail Housing (DP). Global placement distributes the

cells in the layout while minimizing the target cost.

Legalization eliminates any remaining overlap

between the two. Align the cell and place the cell in

the placement position. Fine alignment performs

incremental adjustments to further improve quality.

Global deployment is usually the most time-

consuming part of analytical deployment. The goal of

global deployment is to minimize the cost of density-

constrained cable lengths. The formulation can be

written as

Analogy to Deep Learning

Both analytical placement solving and neural network

training inherently solve nonlinear optimization

problems, so let's explore the fundamental similarities

between the two problems. Compare the wire length

cost to the error of misprediction and the density cost

to the regularization term.Figure1 shows the objective

functions for the two problems. In training a neural

network, each data instance is input to the network

with a feature vector xi and a label yi, and the neural

network predicts a label φ(xi; w).

The task of training is to minimize the overall goal

Beyond the weight w, the target consists of prediction

errors.

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 956

Deep learning toolkits currently consist of three low-

level stacks Operator (OP), automatic gradient

derivation and optimization The engine shown in

Figure 2a. TensorFlow or PyTorch provides mature

and efficient implementations of these three. A stack

with both CPU and GPU acceleration compatibility.

The toolkit also provides convenient APIs for

extending existing set. Each custom operator should

have a well-defined definition Forward and backward

functions for computing costs and gradients. To

develop an analytics lab using the deep learning

toolkit, All you need to implement is the wire length

and wire length custom operator. Density cost for C++

and CUDA. Then you can build your placement A

Python framework that requires very little

development effort and is easy to build Integrate

various optimization engines into your toolkit. The

placement framework can run on both CPU and GPU

platforms. A lot of effort was required to develop the

conventional placement machine When building the

entire software stack using C++. So the bar is from the

design and validation of new placement algorithms is

very high thanks to your development efforts. use deep

learning Toolkits allow researchers to focus on

developing critical tools Parts such as low-level

operators and high-level optimization engines.

The ePlace/RePlAce Algorithm

ePlace/RePlAce is a state-of-the-art global placement

algorithm family that models layouts and netlists as

electrostatic systems [6]-[8]. The cable length cost

originally proposed by [27], [28] uses the weighted

average cable length (WA).

3. THE DREAMPLACE ALGORITHMS

We observe that starting from a random initial

placement achieves the same quality (< 0.04%

difference) with significantly less runtime (21.1% in

Figure 3). In initial placement, standard cells are

placed in the center of the layout with a small Gaussian

noise. In our experiments, the scales of the noise are

set to 0.1% of the width and height of the placement

region. The kernel global placement iterations refer to

the loop that involves the computation of wirelength

and density gradient, optimization engines, and cell

location updating. After the global placement

converges, legalization is performed to remove

remaining overlaps and align cells to placement sites.

The last step before the output is detailed placement to

refine the placement solutions relying on NTUplace3

[4]. The rest of this section will focus on GPU

acceleration to the ePlace/RePlAce algorithm [6], [8].

a) Density Forward and Backward

Forward and backward of density cost is a

computation-intensive procedure. Figure 4b plots the

dependency graph for density cost forward and

backward. The computation consists of four steps:

1) compute density map ρ;

2) compute au,v;

3) compute ψ in forward or ξ in backward;

4) compute D in forward or ∂D ∂xi in backward.

We model this computation flow as a dynamic

bipartite graph forward and backward process, as

shown in Figure 5. First, density map calculation is

modeled as a bipartite graph forward or a special 2D

histogram problem where one cell may update

multiple bins [31]. Then the electric potential and field

are solved via DCT and other Fourier-related

transforms. Finally, the electric force inflicted on each

cell is collected from its overlapped bins, which can be

modeled as a 2D gathering problem [31].

1)Dynamic Bipartite Graph Forward for Density Map:

Each step of density map computation updates bins

based on the overlapping area of corresponding cells.

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 957

Thus it can be modelled as a 2D histogram problem or

a dynamic bipartite graph forward, as shown in Figure

5a. Each edge in the bipartite graph represents an

update to the entry of the target bin in the density map,

where the edge weight represents the overlapping area

of the {cell, bin} pair. The reason why we call it

“dynamic” is that, as cells move, edges in the bipartite

graph, which indicate overlaps between cells and bins,

will change accordingly. A naive algorithm to

parallelize this step is to allocate one GPU thread for

each cell and use atomic addition to accumulate the

overlapping areas with bins [30]. However, as a cell

may cover multiple bins, simply using one GPU thread

to update all overlapped bins sequentially will cause

load imbalance problem due to theng cells.

Thus, it can be modeled as a particular variety in cell

sizes. Empirically, the number of bins covered by a

cell can vary from ∼ 10 to ∼ 1000. This ill-balanced

workload within a thread warp introduces a big chunk

of idle time and significantly degrades the

performance. Therefore, we develop the following

techniques to address this issue.

2) Dynamic Bipartite Graph Backward for Electric

Force: In the electric force computation, each cell

receives the forces from the bins it overlaps with.

Thus, the computation can be viewed as a 2D

gathering problem or a dynamic bipartite graph

backward, as shown in Figure 5b. Each edge

represents the force from a bin, and the edge weight is

the amount of the force. The weight is computed as the

product of the overlapping area between the cell and

the bin and the electric field at the bin. A natural

strategy to accelerate this step is to allocate one thread

for each cell and accumulate the forces sequentially

from its overlapping bins [30]. However, considering

this computation task shares a similar structure with

the density map computation, we borrow the same idea

from Section III-B1 by sorting the cells and allocating

multiple threads for each cell.

b) Density Weight Updating

We need to update the density weight λ in Equation (2)

in each iteration to penalize the density cost. RePlAce

[8] uses the following equations to update λ.

c) Optimization Engine

ePlace/RePlAce [6], [8] uses Nesterov’s method as the

gradientdescent solver with a Lipschitz-constant

approximation scheme for line search. We implement

the same approach in Python leveraging the efficient

API provided by the deep learning toolkit. The

framework is compatible with other well-known

solvers in deep learning toolkits, i.e., various

momentum-based gradient descent algorithms like

Adam [13] and RMSProp, providing additional solver

options.

d) Legalization

We also develop legalization as an operator in

DREAMPlace. It first follows the Tetris-like

procedure similar to NTUplace3 [4]. Then it performs

Abacus row-based legalization [13]. This step copies

the cell locations from GPU to CPU and executes

legalization purely on CPU because we observe that it

only takes several seconds even for million-size

designs with a single CPU thread.

d) Extension to Consider Routability

To optimize routing congestion, we adopt cell

inflation to optimize congested regions [14]. We

follow a similar scheme to RePlAce [8], which

invokes the NCTUgr global router [16] to get the

routing overflow map during placement iterations. For

each metal layer, we compute the ratio between

routing demand and capacity at each routing tile. Then

we use the maximum ratio across all layers to compute

the inflation ratio for each tile.

4. EXPERIMENTAL RESULTS

The framework was developed in Python using

PyTorch for the optimizer and APIs and C++/CUDA

for the low-level operators. CPU parallelism was

implemented using OpenMP for wire length and

density operators. Both DREAMPlace and RePlAce

[8] programs run on a Linux server with 40-core Intel

E5-2698 v4 @2.20 GHz and one NVIDIA Tesla V100

GPU based on Volta architecture. The ISPD 2005

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 958

competition [13] and large-scale industrial design

benchmarks were adopted. We ran experiments using

both double-precision floating point (float64) and

single-precision floating point (float32) on CPU and

GPU. Uses the same container dimensions as

RePlace.

Placement Acceleration

DREAM Place runs on the CPU and is 2x faster than

RePlAce with 40 threads on GP. RePlAce [8] crashed

on his 6th iteration of Nesterov's optimization on his

10 million cell industry benchmark.

A possible cause is the maximum memory usage.

RePlace exceeded maximum memory (64 GB). Before

the crash, it took 3396 seconds to take first place, with

Nesterov averaging 7.5 seconds each iteration. This

benchmark with DREAMPlace requires 1000

iterations, so the estimated execution time was 3396 +

1000 × 7.5 ≈ 10896 seconds. For all RePlAce runs, the

initial placement takes 25-30% of the overall

placement time, and the non-linear placement solution

takes about 70-75%. DREAMPlace's LG is about 10x

faster than NTUplace3 Legalizer in the RePlAce flow.

NTUplace3 handles DP for both placers, so runtimes

are similar. The overall placement flow speedup is

4.6x for GPU and 2.7x for CPU.

Acceleration of Low-Level Operators

We further investigate the efficiency of the low-level

operators, e.g., wirelength forward and backward,

DCT/IDCT, and density forward and backward.

Figure 10 compares three approaches discussed in

Section III-A. “Net-by-Net” denotes the net-level

parallelization; “Atomic” denotes the pin-level

parallelization with atomic operations in Algorithm 1

[30]; “Merged” denotes the combined forward and

backward implementation in Algorithm 2. When using

float32 on GPU, the merged approach achieves 3.7×

speedup over the netby-net one and 1.8× speedup over

the atomic one. On CPU, the atomic strategy is 20%

slower than the net-by-net strategy with 40 threads,

while the merged strategy is over 30% faster.

Meanwhile, a promising speedup factor of 7.5× from

a single thread to 40 threads can be achieved with the

net-by-net strategy. Figure 11 compares the 2D

DCT/IDCT implementation using 2Npoint FFT

(“DCT-2N” and “IDCT-2N”), N-point FFT (“DCT-

N” and “IDCT-N”), and N-point 2D FFT (“DCT-2D-

N” and “IDCT2D-N”) [32]. Considering the map sizes

in the experiment (from 512 × 512 to 4096 × 4096)

with float32, the N-point DCT implementation is 2.1×

faster [30] and the N-point 2D implementation can be

5.0× faster. For IDCT, the N-point implementation

achieves 1.3× speedup and the 2D implementation

achieves 4.1× speedup. This result demonstrates the

efficiency of Algorithm 4. As DCT/IDCT is used in

the density operator, in Figure 12, the efficiency of the

entire density forward and backward procedure is

compared for GPU and CPU implementations. With

all the speedup techniques, an average of 1.5 ∼ 2.1×

speedup on GPU can be achieved with the current

implementation over the preliminary DAC version

[30]. For the parallel CPU implementation, 3.1×

runtime reduction can be achieved with 40 threads.

Routability-Driven Placement

To validate the run-time benefits of routability-driven

placement, we performed an experiment using the

DAC 2012 competition benchmark [41].

Figure 7.1 Output simulation for a,cb,cc,cd,ce

We Assume values for one module Ca=10, Cb=4,

Cc=22, Cd=40, Ce=5., this gives the output results

simulation waveform for FPGA module. For solution

quality, consider two key metrics: 'sHPWL' is the

scaled line length and 'RC' is the routing congestion.

In competition, RC is defined as the weighted average

of the overruns in Figure 8 above. Average GPU

runtime ratio for ISPD2005 and industry benchmarks

with different number of CPU threads.

DREAMPlace's TCAD version runtime normalized to

V100

Using float64 matches the relationship between Tables

II and III. The normalized ratio of 40 threads to GPU

is annotated for easy comparison

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 959

Figure 7.2 Output simulation for module.2 values.

Figure 7.3 For module Ca=16,Cb=29,

Figure 7.4 Layout process for Cc=72,Cd=18,Ce=50

dream placement

CONCLUSION

By transforming the solution to the traditional

analytical placement problem into a neural network

training problem, we use a fresh approach in this

research. We create the new open-source placement

engine DREAMPlace with GPU acceleration using the

deep learning framework PyTorch. In comparison to

the state-of-the-art RePlAce running on several

threads, it provides a speedup of about 40% in global

placement without compromising quality for academic

and industrial benchmarks. To increase overall

efficiency, we investigate various low-level operator

implementations for forward and backward

propagation. Additionally, DREAMPlace is very

extendable, allowing for the simple scripting of high-

level programming languages like Python to include

additional algorithms/solvers and new objectives. We

intend to look at GPU-accelerated detailed cell

inflation for routability and net weighting for timing

optimisation [29], [35], [37].

For even more performance, it can be expanded to

make use of multi-GPU platforms. To ensure run-to-

run determinism, we intend to look into the

effectiveness of solutions that use fixed point

numbers. We anticipate that this approach will open

up new directions for addressing traditional EDA

challenges because DREAMPlace decouples the high-

level algorithmic design from low-level acceleration

efforts.

REFERENCE

[1] A. B. Kahng, S. Reda, and Q. Wang, “Architecture

and details of a high quality, large-scale analytical

placer,” in IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2005, pp.

891–898.

[2] T. Chan, J. Cong, and K. Sze, “Multilevel

generalized force-directed method for circuit

placement,” in ACM International Symposium on

Physical Design (ISPD). ACM, 2005, pp. 185–192.

[3] A. B. Kahng and Q. Wang, “A faster

implementation of APlace,” in ACM International

Symposium on Physical Design (ISPD). ACM, 2006,

pp. 218–220.

[4] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen,

and Y.-W. Chang, “NTUplace3: An analytical placer

for large-scale mixed-size designs with preplaced

blocks and density constraints,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 27, no. 7, pp. 1228–1240, 2008.

[5] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-

H. Lin, T.-C. Chen, and Y.-W. Chang, “NTUplace4h:

A novel routability-driven placement algorithm for

hierarchical mixed-size circuit designs,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 33, no. 12, pp.

1914–1927, 2014.

[6] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H.

Huang, C.-C. Teng, and C.-K. Cheng, “ePlace:

Electrostatics-based placement using fast fourier

© July 2023 | IJIRT | Volume 10 Issue 2 | ISSN: 2349-6002

IJIRT 161217 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 960

transform and nesterov’s method,” ACM Transactions

on Design Automation of Electronic Systems

(TODAES), vol. 20, no. 2, p. 17, 2015.

[7] J. Lu, H. Zhuang, P. Chen, H. Chang, C. Chang, Y.

Wong, L. Sha, D. Huang, Y. Luo, C. Teng, and C.

Cheng, “ePlace-MS: Electrostatics based placement

for mixed-size circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 34, no. 5, pp. 685–698, 2015.

[8] C. Cheng, A. B. Kahng, I. Kang, and L. Wang,

“RePlAce: Advancing solution quality and routability

validation in global placement,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 38, no. 9, pp. 1717–1730, 2019.

[9] Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y.-W.

Chang, “Generalized augmented lagrangian and its

applications to VLSI global placement,” in

ACM/IEEE Design Automation Conference (DAC).

IEEE, 2018, pp. 1–6.

[10] N. Viswanathan, M. Pan, and C. Chu, “FastPlace

3.0: A fast multilevel quadratic placement algorithm

with placement congestion control,” in IEEE/ACM

Asia and South Pacific Design Automation

Conference (ASPDAC). IEEE, 2007, pp. 135–140.

[11] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y.

Young, “Ripple: A robust and effective routability-

driven placer,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems

(TCAD), vol. 32, no. 10, pp. 1546–1556, 2013.

[12] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I.

Nedelchev, “PO-LAR: placement based on novel

rough legalization and refinement,” in IEEE/ACM

International Conference on Computer-Aided Design

(ICCAD). IEEE, 2013, pp. 357–362.

[13] T. Manochandar and P. K. Diderot,

"Classification of Alzheimer’s Disease using

Neuroimaging Techniques," 2023 7th International

Conference on Intelligent Computing and Control

Systems (ICICCS), Madurai, India, 2023, pp. 1163-

1168, doi: 10.1109/ICICCS56967.2023.10142373.

[14] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL:

An effective placement algorithm,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 31, no. 1, pp. 50–

60, 2012.

[15] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L.

Markov, and S. Ramji, “MAPLE: multilevel adaptive

placement for mixed-size designs,” in ACM

International Symposium on Physical Design (ISPD).

IEEE, 2012, pp. 193–200.

[16] T. Lin, C. Chu, and G. Wu, “POLAR 3.0: An

ultrafast global placement engine,” in IEEE/ACM

International Conference on Computer-Aided Design

(ICCAD). IEEE, 2015, pp. 520–527.

[17] W. Li, Y. Lin, and D. Z. Pan, “elfPlace:

Electrostatics-based placement for large-scale

heterogeneous fpgas,” in IEEE/ACM International

Conference on Computer-Aided Design (ICCAD).

Westminster, CO: IEEE Press, November 2019

