Connectedness and Cut-Point in Topological Space

Ritu

Assistant Professor, Department of Mathematics, Metis Degree College Anta, Safidon (Jind)

Abstract - In this paper, we study connectedness in reference to cut-points leading to the introduction of cut-point space. We establish some important results regarding cut-point.

Index Terms - Connectedness, disconnectedness, separated sets.

INTRODUCTION

For basic definitions and terminology, one may refer to [1-3], where many more references may be found.

Cut- Point: - Let X be a connected topological space. A point $x \in X$ is said to be a cut point of X if $X - \{x\}$ is a disconnected subset of X, i.e., if there is a A|B separation of $X - \{x\}$ in X - {x}.

In other words,

if X - {x} = $A \cup B$ where $A \neq \emptyset$, $B \neq \emptyset$

 $\overline{A} \cap B = \phi = A \cap \overline{B}$ where $\overline{A}, \overline{B}$ are the closure of A, B with respect to the topology of X then x is called a cut point.

A point which is not a cut point of X is called a noncut-point.

Remark: Let X be a topological space and a point $x \in X$ is said to be closed if $\{x\}$ is closed subset of X. A point $x \in X$ is said to be open if $\{x\}$ is open subset of X.

Cut – point space: A non- empty connected topological space X is said to be a cut- point space if every x in X is a cut –point of X.

Example: Let \mathbb{R} be the set of real number with usual topology u.

For each $x \in \mathbb{R}$ $\mathbb{R} - \{x\} = (-\infty, x) \cup (x, \infty)$ where $(-\infty, X)$, (X, ∞) are open sets in \mathbb{R} . Therefore, x is a cut-point of \mathbb{R} Thus, every point of \mathbb{R} is a cut point, and so \mathbb{R} is a cut point space. Example: Let Z denotes that the set of all integers. We define a topology on Z as follows: Let $x \in X$

We define
$$W_x = \begin{cases} \{x\} & \text{if } x \text{ is even} \\ \{x - 1, x, x + 1\} & \text{if } x \text{ is odd} \end{cases}$$

Let $\beta = \{W_x : x \in Z\}$
Clearly $_{x \in Z}^{\cup} W_x = Z$
Let x, y $\in Z$, x $\neq y$.
Case (i) x and y are even,
 $W_x = \{x\}, W_y = \{y\}$
 $W_x \cap W_y = \phi$

Case (ii)x is even and y is odd We suppose that $W_x \cap W_y \neq \phi$ Let $z \in W_x \cap W_y$ Then $z \in W_x$, $z \in W_y$ Since x is even, $soW_x = \{x\}$. Therefore, z = xThus $W_z = \{z\} = \{x\}$ i.e., $z \in W_z \subset W_x \cap W_y$.

Case (iii) x and y are odd. Suppose that $W_x \cap W_y \neq \phi$ Let $z \in W_r \cap W_v$ Now $W_x = \{x-1, x, x+1\}$ $W_{v} = \{y-1, y, y+1\}$ Since $W_x \cap W_y \neq \emptyset$, so either x-1 = y-1 or x-1 = y or x-1 = y + 1Or x = y-1 or x = y or x = y+1 or x + 1 = y-1 or x + 1 = y-1y or x + 1 = y + 1Since $x \neq y$ and both x, y is odd, so we have Either x-1 = y + 1 or x + 1 = y - 1 i.e., either z = x-1 = y - 1y+1Or z = x + 1 = y - 1This shows that z is even So $W_z = \{z\}$ Thus, in this case $z \in W_z \subset W_x \cap W_y$ From these cases, we see that β become a base for a

From these cases, we see that β become a base for a topology say τ_{β} on Z. Hence (Z, τ_{β}) is a topological space. Further, we suppose that (Z, τ_{β}) is connected.

Suppose $Z = A \cup B$ where A and B are two disjoint non – empty open sets. Let $a \in A, b \in B$ Without loss of generality, we suppose that a < b. Also, we suppose that $a = a_0 < a_1 < \dots \dots a_{n-1} < a_n = b$ in Z. From this we see that $a_m \in A, a_{m+1} \in B$ for some $0 \le m \le n-1$ But $W_{a_m} \cap W_{a_{m+1}} \ne \phi$ Since A and B are both open in Z, so $W_{a_m} \subset A$ and $W_{a_{m+1}} \subset B$ As $A \cap B = \phi$, so $W_{a_m} \cap W_{a_{m+1}} = \phi$ Thus, we arrive at a contradiction. Hence (Z, τ_β) is connected.

It is easy to see that every point of Z is cut point of Z.

Theorem: Let X be a connected topological space and x be a cut point of X such that $X - \{x\} = A|B$. Then X is open or closed. If $\{X\}$ is open, A and B are closed and if $\{X\}$ is closed, A and B are open.

Proof: since $X - \{x\} = A \mid B$, so $X - \{x\} = A \cup B$, $A \neq A$ $\emptyset, B \neq \emptyset,$ $A \cap B = \emptyset$, where A, B are both open and closed in X $-\{x\}.$ As A is open in $X - \{x\}$ and $X - \{x\}$ is a topological subspace of X, so there exist an open subset V of X such that $A = V \cap (X - \{x\})$ And so, $A = V - \{x\}$. (1)Since A is closed in $X - \{x\}$ and $X - \{x\}$ is a topological subspace of X, so there exist a closed subset F of X, such that $A = F \cap (X - \{x\}) = F - \{x\}.$ (2)By (1) and (2) we get. $A = V - \{x\} = F - \{x\}$ (3) Let, if possible, V = FSince $A \neq \emptyset$, so $V - \{x\} \neq \emptyset$ Also, $V \neq X$ otherwise by (3), $A = X - \{x\}$ and so B = Ø. This gives a contradiction. Thus, V is open as well as closed set such that $V \neq \emptyset$, $V \neq X.$ Hence X is disconnected space, a contradiction. So, $V \neq F$. Thus $V - \{x\} = F - \{x\}$. This implies that either $\{x\} =$ V - F or $\{x\} = F - V$. If $\{x\} = V - F$, then $\{x\}$ is open in X.

Now by (3) $A = F - \{x\} = F$ is closed in X. [$x \notin F$] If $\{x\} = F - V$, then $\{x\}$ is closed in X $A = V - \{x\}$ implies A = V. This implies that A is open in X.

Remark: Any cut point in a non-empty connected topological space is either open or closed.

Theorem: Let X be a connected topological space and let Y be the subset of all cut points of X. Then the following statements hold.

(a) Every non-empty connected subset of Y, that is not a singleton, contains at least one closed point.

(b) $x \in Y$ is open, then every limit point of $\{x\}$ in Y is a closed point.

Proof :(a) Let A be a non-empty connected subset of Y that is not singleton.

Let, if possible, A contains no closed point.

For every $x \in A$.

 $\Rightarrow x \in Y.$

 \Rightarrow x is a cut point of X.

So either $\{x\}$ is closed or open.

Since $x \in A$ and so by assumption $\{x\}$ is open.

Also, A is open. [Since A contains no closed point and so every point of A is open].

Therefore $A - \{x\}$, $\{x\}$ form a separation of A.

This implies that A is not connected, a contradiction.

So A contains at least one closed point.

(b) Given that $x \in Y$ is open.

Let a be any limit point of $\{x\}$ in Y and $a \in Y$.

- To prove {a} is closed point in Y.
- Let if possible {a} is open in Y.

Then a is a neighbourhood of a.

Since a is a limit point of $\{x\}$, So every neighbourhood of a in Y, contain at least one point of $\{x\}$ different from a.

In particular $\{a\} \cap (\{x\} - \{a\}) \neq \emptyset$, contradiction. Thus $\{a\}$ is closed point in Y.

REFERENCE

- J. L. Kelley, General Topology, P. W. N., New York, 1955.
- [2] S. Willard, General Topology, Reading, Mass (Addison-Wesely, 1970).

[3] T. Y. Kong, R. Kopperman and P. R. Mayer, A topological approach to digital topology, Amer. Math. Monthly 98(1991) 901-917.