
© June 2022 | IJIRT | Volume 9 Issue 1 | ISSN: 2349-6002

IJIRT 155208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 137

Functional Verification of Logic Modules for a Ethernet

Switch

Venkat Pedada
1
, Namala Sreeja

2
, Bheemaraju Jalandhar

3
, Tulasi Naveen Kumar

4
, Mrs.K. Deepa Rao

5
,

Mr.D. Srikanth
6

1,2,3,4
Department of Electronics and Communication Engineering, J.B. Institute of Engineering &

Technology (UGC Autonomous, Permanently Affiliated to Jawaharlal Nehru Technological University,

Hyderabad) Bhaskar Nagar (Post), Moinabad Mandal, R.R. Dist.-500075
5,6

Asst. Professor, Department of Electronics and Communication Engineering, J.B. Institute of

Engineering & Technology (UGC Autonomous, Permanently Affiliated to Jawaharlal Nehru

Technological University, Hyderabad) Bhaskar Nagar (Post), Moinabad Mandal, R.R. Dist.-500075

Abstract— This work presents the functional

verification of logic modules for a Ethernet Switch for

an ASIC based on the NetFPGA platform. A coverage-

driven constrained random stimulus approach is used.

It is implemented in a layered testbench environment

with self-checking capability. This environment

implements the methodology presented by the

Verification Methodology Manual (VMM) using

SystemVerilog. The main advantage of this

methodology is its reusability. This characteristic

enables the development of a common testbench

environment for our modules with minimum changes

for each particular module. The four logic modules

presented in this work implement functions of a

Ethernet switch. The common characteristic of these

circuits is the close dependency between the time and its

functionality. These modules need time information to

deal with problems such as rate limiting, quality of

service (QoS) or aging lookup tables in classification

engines. As described in the literature, the transaction-

level models used to predict the circuit behavior are

time-independent when the implementation details are

not relevant. But when time information influences the

circuit functionality, the model needs to replicate the

circuit latency to be functionally equivalent. We

propose a simple solution to the synchronization process

between the model and the design under verification

(DUV). This solution preserves the main advantage of

transaction-level models (faster simulation time than

the RTL model) and generates the result data with the

same circuit latency. These features made possible to

run a considerable amount of test cases that helps to

find and correct bugs in the circuit with a high

confidence measured by the functional and code

coverage results.

Index Terms: VMM, Packets, Scoreboard, RTL etc.

I.INTRODUCTION

In this paper, we will verify the Switch RTL core.

Following are the steps we follow to verify the

Switch RTL core.

1) Understand the specification

2) Developing Verification Plan

3) Building the Verification Environment. We will

build the Environment in Multiple phases, so it will

be easy for you to lean step by step.

Phase 1) We will develop the testcase and interfaces,

and integrate them in these with the DUT in top

module.

Phase 2) We will Develop the Environment class.

Phase 3) We will develop reset and configuration

methods in Environment class. Then using these

methods, we will reset the DUT and configure the

port address.

Phase 4) We will develop a packet class based on the

stimulus plan. We will also write a small code to test

the packet class implementation.

Phase 5) We will develop a driver class. Packets are

generated and sent to dut using driver.

Phase 6) We will develop receiver class. Receiver

collects the packets coming from the output port of

the DUT.

Phase 7) We will develop scoreboard class which

does the comparison of the expected packet with the

actual packet received from the DUT.

© June 2022 | IJIRT | Volume 9 Issue 1 | ISSN: 2349-6002

IJIRT 155208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 138

Phase 8) We will develop coverage class based on the

coverage plan.

Phase 9) In this phase , we will write test cases and

analyze the coverage report.

II. SPECIFICATION:

SWITCH SPECIFICATION:

This is a simple switch. Switch is a packet based

protocol. Switch drives the incoming packet which

comes from the input port to output ports based on

the address contained in the packet.

The switch has a one input port from which the

packet enters. It has four output ports where the

packet is driven out.

Packet Format:

Packet contains 3 parts. They are Header, data and

frame check sequence.

Packet width is 8 bits and the length of the packet can

be between 4 bytes to 259 bytes.

Packet Header:

Packet header contains three fields DA, SA and

length.

DA: Destination address of the packet is of 8 bits.

The switch drives the packet to respective ports based

on this destination address of the packets. Each

output port has 8-bit unique port address. If the

destination address of the packet matches the port

address, then switch drives the packet to the output

port.

SA: Source address of the packet from where it

originate. It is 8 bits.

Length: Length of the data is of 8 bits and from 0 to

255. Length is measured in terms of bytes.

If Length = 0, it means data length is 0 bytes

If Length = 1, it means data length is 1 bytes

If Length = 2, it means data length is 2 bytes

If Length = 255, it means data length is 255 bytes

Data: Data should be in terms of bytes and can take

anything.

FCS: Frame check sequence

This field contains the security check of the packet. It

is calculated over the header and data.

Configuration:

Switch has four output ports. These output ports

address have to be configured to a unique address.

Switch matches the DA field of the packet with this

configured port address and sends the packet on to

that port. Switch contains a memory. This memory

has 4 locations, each can store 8 bits. To configure

the switch port address, memory write operation has

to be done using memory interface. Memory address

(0,1,2,3) contains the address of port(0,1,2,3)

respectively.

Interface Specification:

© June 2022 | IJIRT | Volume 9 Issue 1 | ISSN: 2349-6002

IJIRT 155208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 139

The Switch has one input Interface, from where the

packet enters and 4 output interfaces from where the

packet comes out and one memory interface, through

the port address can be configured. Switch also has a

clock and asynchronous reset signal.

Memory Interface:

Through memory interfaced output port address are

configured. It accepts 8 bit data to be written to

memory. It has 8 bit address inputs. Address 0,1,2,3

contains the address of the port 0,1,2,3 respectively.

There are 4 input signals to memory interface. They

are

input mem_en;

input mem_rd_wr;

input [1:0] mem_add;

input [7:0] mem_data;

All the signals are active high and are synchronous to

the positive edge of clock signal.

To configure a port address,

1. Assert the mem_en signal.

2. Asser the mem_rd_wr signal.

3. Drive the port number (0 or 1 or 2 or 3) on the

mem_add signal

4. Drive the 8 bit port address on to mem_data signal.

III.VERIFICATION PLAN

Overview

This Document describes the Verification Plan for

Switch. The Verification Plan is based on System

Verilog Hardware Verification Language. The

methodology used for Verification is Constraint

random coverage driven verification.

Feature Extraction:

This section contains list of all the features to be

verified.

1) ID: Configuration

Description: Configure all the 4 port address with

unique values.

2) ID: Packet DA

Description: DA field of packet should be any of the

port address. All the 4 port address should be used.

3)ID : Packet payload

Description: Length can be from 0 to 255. Send

packets with all the lengths.

4) ID: Length

Description:

Length field contains length of the payload.

Send Packet with correct length field and incorrect

length fields.

5) ID: FCS

Description:

Good FCS: Send packet with good FCS.

Bad FCS: Send packet with corrupted FCS.

Stimulation Generation Plan:

1) Packet DA: Generate packet DA with the

configured address.

2) Payload length: generate payload length ranging

from 2 to 255.

3) Correct or Incorrect Length field.

4) Generate good and bad FCS.

Coverage Plan:

1) Cover all the port address configurations.

2) Cover all the packet lengths.

3) Cover all correct and incorrect length fields.

4) Cover good and bad FCS.

5) Cover all the above combinations.

IV.VERIFICATION ENVIRONMENT

V.VERIFICATION RESULTS

© June 2022 | IJIRT | Volume 9 Issue 1 | ISSN: 2349-6002

IJIRT 155208 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 140

VI.ACKNOWLEDGEMENT

We are deeply grateful to Mrs.k.Deepa Rao,

Mr.D.Srikanth who gave us guidance and suggestions

and helped us in the successful completion of this

project.

REFERENCE

[1] C. Spear, SystemVerilog for Verification,

Second Edition: A Guide to Learning the

Testbench LanguageFeatures. Springer

Publishing Company, Incorporated, 2008

[2] M. Strum, W. J. Chau, and E. Romero,

“Comparing two testbench methods for

hierarchical functional verification of a bluetooth

baseband adaptor,” in Hardware/Software

Codesign and System Synthesis,2005.

CODES+ISSS ’05. Third IEEE/ACM/IFIP

International Conference on, 2005, pp. 327 –332.

[3] S. Vasudevan, Effective Functional Verification.

Springer, 2006.

[4] M. Shreedhar and G. Varghese, “Efficient fair

queuing using deficit round-robin,” Networking,

IEEE/ACM Transactions on, vol. 4, no. 3, pp.

375 –385, Jun. 1996.

[5] M.-K. You, Y.-J. Oh, and G.-Y. Song,

“Implementation of a hardware functional

verification system using systemc

infrastructure,” in TENCON 2009 - 2009 IEEE

Region 10 Conference, 2009, pp. 1 –5.

[6] J. Bergeron, Writing Testbenches using

SystemVerilog. Secaucus, NJ, USA: Springer-

Verlag New York, Inc., 2006.

