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Abstract- Spectrum Sensing (SS) plays an essential role 

in Cognitive Radio (CR) networks to diagnose the 

availability of frequency resources.  In this   we aim to 

provide an in-depth survey on the most recent 

advances in SS for CR. We start by explaining the 

Half-Duplex and Full-Duplex paradigms, while 

focusing on the operating modes in the Full-Duplex. A 

thorough discussion of Full-Duplex operation modes 

from collision and through put points of view is 

presented. Then, we discuss the use of learning 

techniques in enhancing the SS performance 

considering both local and cooperative sensing 

scenarios. In addition, recent SS applications for CR-

based Internet of Things and Wireless Sensors 

Networks are presented. Furthermore, we survey the 

latest achievements in Spectrum Sensing as a Service, 

where the Internet of Things or the Wireless Sensor 

Networks may play an essential role in providing the 

CR network with the SS data. We also discuss the 

utilization of CR for the 5th Generation and Beyond 

and its possible role in frequency allocation. With the 

advancement of telecommunication technologies, 

additional features should be ensured by SS such as the 

ability to explore different available channels and free 

space for transmission. As such, we highlight 

important future research axes and challenging points 

in SS for CR based on the current and emerging 

techniques in wireless communications. 
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INTRODUCTION 

 

Two decades ago, introduced a new concept in 

wireless telecommunication the Cognitive Radio 

(CR) is mainly based on Soft Defined Radio (SDR) 

where specific hardware can be replaced by more 

generic hardware that can be configured via 

software. In addition to being softly configurable, 

CR is aware and adaptable to the radio environment, 

which can be exploited in optimizing the use of 

available frequency bands while protecting the 

occupied ones from harmful interference 

Most of the current wireless communication systems 

are based on the concept of fixed (or static) 

frequency allocation. They are designed to operate 

on pre-selected frequency bands. This static 

allocation results in a low spectrum utilization 

especially at low traffic periods. Based on [ the usage 

of some allocated frequency bands is lower than 

15%. In addition, the development towards 5G and 

Beyond 5G technologies, the exponential growth in 

the number of connected objects via the Internet of 

things Wireless Sensor Network (WSN) devices and 

recent wireless applications push the wireless 

communication community to enhance the 

utilization of the limited frequency resources to 

satisfy the increasing demand on the wireless 

communication services 

CR has been introduced as a potential candidate to 

perform complete Dynamic Spectrum Allocation by 

exploiting the free frequency bands that are “spectrum 

holes” or “white spaces” Being capable to identify these 

spectral opportunities, CR classifies the users into two 

categories: licensed, i.e., the Primary Users (PUs), and   

Secondary Users (SUs). While PUs can access the 

spectrum whenever they want, SUs are restricted by the 

activities of PUs. In other words, SUs should respect 

the PUs’ Quality of Service and harmful interference 

coming from SUs to PUs transmission is prohibited. 

Therefore, three paradigms of CR can be distinguished 

according to the possibility of co-existence of SU and 

PU transmissions in the same channel, the permitted 

transmit power of SU and the cooperation between SU 

and PU, three main paradigms of CR can be 

distinguished: transmissions in the same channel, the 

permitted transmit power of SU and the cooperation 



 

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002 

 

IJIRT 154348 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 638  

between SU and PU, three main paradigms of CR can 

be distinguished 

1.Underlay Access the SU may transmit 

simultaneously with the PU over the same channel. 

However, the transmitted power should not exceed a 

certain threshold in order to keep the interference on 

PU below a tolerable value  

2. Overlay Access the SU may transmit 

simultaneously with the PU on the same channel up to 

its maximum power, but at the cost of playing a role 

of relay between two or more PU of   Full-Duplex 

(IBFD) communication has recently been proposed in 

order to increase the spectrum efficiency the same 

frequency channel to transmit and receive 

simultaneously. IBFD is based on the Self-

Interference Cancellation (SIC), where the Self-

Interference (SI) is canceled in order to obtain the 

signal of interest. The application of SIC has been 

extended to CR providing it with the ability to sense 

and transmit at the same time leading to the so-called 

Full-Duplex Cognitive Radio (FDCR) this Based on 

the SIC capability and the flexibility of FDCR, several 

access schemes have been proposed and various 

challenges have been treated such as the SIC-based 

modes to be adopted, hybrid mode between HDCR 

and FDCR and the effects of the residual SI on the 

sensing process since SIC is imperfect, the SU sends 

its data while relaying the PUs. This kind of access 

requires high level of cooperation between PUs and 

SUs, which may expose the PUs privacy. 

3. Interweave Access: SU is allowed to transmit using 

its maximum power only when PU is absent. This 

paradigm is also known as the classical CR and it is 

the focus of the given its popularity. 

 
The main drawback of the underlay paradigm is the 

low transmitted power, which adversely impacts the 

throughput. The use of the overlay paradigm is limited 

to scenarios where PU and SU have a high level of 

cooperation. Interweave paradigm allows SUs to 

transmit with their maximum power, but at the cost of 

monitoring the activity of PU In classical interweave 

systems, the SU activity period is divided into two time 

slots sensing and transmission. This leads to the so-

called Half-Duplex Cognitive Radio (HDCR). HDCR 

applies the protocol by adopting an alternating sensing- 

transmission fashion. During the sensing slot, the SU 

only senses the channel to detect the presence or 

absence of the PU, and it cannot transmit. SU should 

remain silent if it detects a transmission from the PU. 

Otherwise, the SU resumes sending its data. Note that 

the silence of the SU during the sensing slot affects its 

transmission rate. Moreover, periodic sensing may lead 

to collisions between the SU and PU as the PU may 

become active again during the SU transmission after 

being silent during the SU sensing slot. 

Based on the SIC capability and the flexibility of 

FDCR, several access schemes have been proposed and 

various challenges have been treated such as the SIC-

based modes to be adopted, hybrid mode between 

HDCR and FDCR and the effects of the residual SI on 

the sensing process since SIC is imperfect 

As a powerful tool, machine learning techniques are 

exploited in the domain of CR to improve the SS 

performance SS may be formulated as a binary 

classification problem related to the presence of PU. 

Unlike classical SS, the learning techniques may 

overcome the need to know statistical parameters of the 

channel or the PU signal. More- over, these techniques 

are proposed to predict the PU activity, which can 

enhance the spectral efficiency of the secondary 

network and protect the primary transmission from the 

secondary interference. 

The usage of CR is extended to the domains IOT of 

WSN This was motivated by the huge number of new 

IOT/WSN devices that require additional frequency 

resources. Although using CR for WSN and IOT seems 

promising, more investigation is needed at several 

levels such as the design of the exchange protocols and 

access management. 

CR for fifth Generation (5G) is expected to play an 

important role to answer the need of the increasing 

number of data hungry device Knowing that 5G will 

extend the spectrum band to the millimeter-wave range, 

CR can be used to improve the spectrum utilization 

while providing better protection to co-existing users. 

Moreover, CR can be used to address interference 



 

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002 

 

IJIRT 154348 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 639  

issues from space, frequency and time domain. This is 

important knowing that 5G is expected to exploit 

spatial reuse of the spectrum as one of the main 

features of 5G systems. Yet, introducing CR in 5G 

imposes several challenges that need addressing. 

CR is proposed to be used in various wireless 

communication technologies, since it proves itself as 

one of the efficient techniques to ensure fair and 

flexible frequency allocation CR benefits from the 

emergence and development of learning techniques 

applied to wireless communication Accordingly, SS 

should be ceaselessly improved to keep up with the 

recent technological advancements. In this context, 

several challenges are raised such as the need for huge 

frequency resources, sensing of the spatial 

availability, intelligent sensing of the spectrum and 

energy-efficient protocol design 

In the literature several survey the usage of SS for CR 

in the presented many aspects of spectrum sensing 

from a cognitive radio perspective. However, this 

recent applications and paradigms. surveys FDCR 

technique by focusing on the concurrent transmit– 

sense mode while other techniques, such as transmit–

receive, were not covered.  details the challenges of 

applying CR in IOT networks by focusing on the 

issues related to SS.  surveys the techniques of SS with 

a focus on wideband and compressive sensing. in the 

survey the recent techniques of SS by highlighting the 

mathematical models deriving the SS metrics 

(detection and false alarm probabilities). However, 

recent paradigms, such as Full-Duplex, and recent 

applications, such as the Internet of Things, are not 

addressed. The work limited to technical issues related 

to the application of CR in IOT Finally the use of CR 

for 5G communication without further explanation of 

recent development in SS. 

This aims at providing comprehensive surveying and 

analysis of the recent research advancements and 

emerging applications in the field of SS for CR. For 

numerical evaluation of SS explain the fundamental 

concepts of SS and summarize the state of the art in 

the context of SS for CR. Moreover, we discuss the 

use of machine learning to enhance SS and the 

applications of CR in IOT/WSN from SS perspective. 

SS for 5G-based application Finally, we propose 

possible perspectives to develop this promising 

domain. The main contributions as follows 

• A state of the art on the classical SS techniques is 

provided The operating modes of CR derived from 

involving the FD tool in CR are detailed and 

investigated 

• The role of Machine and Deep Learning in enhancing 

the SS is surveyed, where we analyzed the contributions 

of these techniques from local sensing and cooperative 

sensing levels 

• Using SS in IOT/WSN and the latest achievements in 

both Spectrum Sensing as a Service and Dynamic 

Spectrum Sharing for IOT/WSN networks are 

surveyed. 

• The possible application of CR, especially SS, in the 

5G and the upcoming technologies is discussed 

• New trends and challenges related to the future 

wireless communication technologies are also 

discussed and investigated. 

The HDCR is presented by explaining classical SS 

using the traditional detection methods. The silence 

period of HDCR is also detail at both levels of SU 

throughput and collision to PU. FDCR is described and 

the related operating modes, as well as the sensing 

process, we present the main techniques behind the 

FDCR. Then, we present the popular derived modes 

using SIC, Transmit-Sense and Transmit-Receive with 

thorough analysis and investigation. The application of 

learning techniques for SS is surveys the latest 

achievements of the CR applications in IOT/WSN 

networks. The role of IOT/WSN in applying Spectrum 

Sensing as a Service, and the CR-based operation of 

IOT/WSN are also considered and analyzed. A 

spectrum sensing for 5G-based CR applications is 

presented i several future challenges related to applying 

and developing SS in several domains, such as: 

IOT/WSN, the CR operating modes, the future 

technologies, the access strategies of SU, the use of 

emerging techniques, and recent smart SS 

Half-Duplex Cognitive Radio 

           y(n) = x(n) + w(n), 

where y(n) is the received signal, η is the channel 

indicator, i.e., η = 0 if PU is absent and η = 1 otherwise. 

x(n) is the PU signal and w(n) is the additive noise at 

the receiver of SU. For active PU (η = 1), SU receives 

a noisy version of the PU signal. Therefore, it should be 

aware of the PU channel status by overcoming the noise 

effects. By contrast, when PU is absent, SU receives 

only the noise w(n). Here, SU should be able to detect 

the presence or the absence of PU to better exploit the 

channel availability. In Equation, the received signal 

y(n) does not depend on the SU signal, since we 

consider that SU remains silent during the SS period 
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The silence period of SU in HDCR is inevitable due to 

two main challenges. First, some detectors like Energy 

Detector (ED) cannot distinguish between PU and SU 

signal Thus SU must be silent during the sensing 

period so that the sensing process can reliably 

diagnose the channel status. Second, most of the 

detectors suffer bad performance at low Signal-to-

Noise-and-Interference Ratio (SNIR). Due to the short 

distance between the transmit and the receive antennas 

of SU, any transmission of SU during the sensing 

period leads to huge SI compared to the PU signal. 

This SI would lead to an unreliable decision of the 

sensing process. 

 

DETECTION CRITERIA 

 

To detect the PU signal, SU evaluates a Test Statistic 

based on the received signal y(n). The aim of 

evaluating TS is to compare it to a threshold to decide 

on the PU status by distinguishing between the noise-

only case and the PU-plus-noise case. Many criteria 

have been exploited to distinguish between these two 

cases. In the following, the most adopted criteria that 

are used by the SU to detect the presence of PU 

1. Incremental Energy 

When PU starts to transmit, the energy of the received 

signal will be incremented compared to the noise-only 

case. By estimating the power of the stationary noise, 

and by comparing the energy of the received signal to 

a pre-defined threshold depending on the noise power, 

SU decides whether the channel is occupied by a PU 

signal or not. Many detectors are based on this 

criterion, the most known is the traditional ED Other 

detectors such as the Cumulative Power Spectral 

Density (CPSD) detect energy detector and 

generalized ED are based on differentiating between 

the energy of the received signal with and without the 

presence of PU’s signal. It is worth mentioning that 

the generalized ED may use a power exponent p = 2 in 

the definition of it as an extension of the ED Test 

Statistic, which is based on the energy of the received 

signal (i.e., p = 2). However, the energy- based 

detectors face the problem of Noise Uncertainty (NU), 

which occurs when the noise power becomes time-

dependent This adversely impacts the SS performance 

of these detectors. 

2. PU signal pattern 

The features of the communication signals can be 

exploited by the SU to distinguish them from the 

noise. Processes, such as the modulation, oversampling, 

sine-wave carrier, adding a cyclic prefix (e.g., for the 

OFDM signal), etc. do not exist in the noise. Several 

detectors were proposed in the literature by exploiting 

these characteristic such as the Detector   which 

distinguishes the PU signal from the noise based on the 

cyclic features caused by the modulation, the sinewave 

carrier etc. Other detectors such as Auto-Correlation 

Detector (ACD) and Eigenvalue-based Detector (EVD) 

exploit the correlation presented in the PU signal due to 

the over sampling and cyclic prefix. The main 

advantage of such detectors is their independence of the 

noise variance, which also overcome the NU problem. 

Never the less, these detectors are more 

computationally complicated than the classical ED. 

Furthermore, cyclic frequencies of the PU signal should 

be known The key technology behind the IBFD 

communication, SIC, can be divided into two steps: 

passive cancellation and active cancellation. In passive 

cancellation the SI is canceled in the analog domain 

considering several parameters such as the distance 

between the transmit and the receive antennas, the 

wavelength of the signal, the absorption of the material. 

The key technology behind the IBFD communication, 

SIC, can be divided into two steps passive cancellation 

and active cancellation. In passive cancellation the SI is 

canceled in the analog domain considering several 

parameters such as the distance between the transmit 

and the receive antennas, the wavelength of the signal, 

the absorption of the material, etc.to apply CSD. This 

requires cooperation between SU and PU Moreover, 

some detectors, such as Goodness of Fit (GOF) test and 

Kurtosis detectors detect the PU signal using the 

statistics of the communication signals, which are 

different from the statistics of noise. Thus, the noise’s 

distribution should be a priori known to the SU 

3.PU signal’s waveform 

Sending a pilot signal is widely used by 

telecommunication standards to establish 

communication with a receiver by ensuring time 

synchronization, channel estimation, etc. A known PU 

pilot signal can be used by the SU to detect PU activity. 

Waveform or Matched filter detector correlates the 

received signal with the known PU pilot signal in order 

to analyze the channel opportunity Even though this 

detector is an optimal one, it requires knowledge of the 

PU signal with perfect time and frequency 

synchronization. Therefore, the application of this 

detector in CR becomes challenging, where the SU may 
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deal with a great variety of signals. 

4 Full-Duplex Cognitive Radio 

Applying SIC in CR aims at eliminating the effect of 

the transmitted secondary signal (i.e., Self-

Interference) on the reliability of the SS decision. SU 

seeks to receive purely the PU signal (with noise) 

when the latter is active, or only the noise if PU is 

absent. Thus, the transmitted signal of the SU should 

be canceled at the SU receiving antenna, if the SU 

starts to simultaneously transmit and sense. by 

applying LAT protocol, FDCR can continuously 

monitor PU without the need to interrupt the 

transmission to make the SS, as in the case of HDCR 

where LBT is applied. 

Another strategy for the LAT protocol is adopted in 

without using SIC. The sensing operation is performed 

by the receiving SU instead of the transmitting one. 

After decoding the signal received from its peer 

(another SU), the secondary receiver subtracts the 

signal of its peer from the overall received signal. 

After that, spectrum sensing is carried out based on the 

remaining signal in order to decide about the 

presence/absence of the PU.ie 

Primary User 

 
 

Self-Interference Cancellation 

The key technology behind the IBFD communication, 

SIC, can be divided into two steps passive cancellation 

and active cancellation. In passive cancellation the SI 

is canceled in the analog domain considering several 

parameters such as the distance between the transmit 

and the receive antennas, the wavelength of the signal, 

the absorption of the material, etc. 

In active cancellations the receiver suppresses the SI 

in the digital domain given that the receive and 

transmit circuits are co-located and that the SI signal 

is known at the receiver. Due to the short distance 

between the transmit (TX) and the receive (RX) 

antennas, the SI received power at RX is huge 

compared to the signal of interest (PU signal). Thus, the 

channel estimation between TX and RX should be very 

precise in order to re-generate the SI with high precision 

and to cancel it afterwards. Moreover, the hardware 

imperfections adversely impact the SIC performance 

and should be mitigated, since their power becomes 

very high compared to the signal of interest. the 

hardware imperfections are due to several factors 

including oscillator phase noise, the non-linearity of the 

amplifiers, the ADC noise, etc. Subsequently, due to the 

error in channel estimation and the hardware 

imperfections, Residual Self-Interference (RSI) 

remains at the receiver .modeled as both linear and non-

linear combinations of the SI signal due to the 

amplification at both the output of the transmit circuit 

and the input of the receive circuit  Mitigating these 

imperfections has gained a lot of attention during the 

last decade especially the multiplicative noise of the 

oscillator and the non-linearity of the power amplifiers. 

In the following, we present the modes of operation of 

FDCR. 

 

Transmit-Sense 

Transmit-Sense (TS) mode is a direct result of applying 

the LAT protocol. SIC is used to cancel the SI when the 

SS is performed. Thus, the sensing Another strategy for 

the LAT protocol is adopted in without using SIC. The 

sensing operation is performed by the receiving SU 

instead of the transmitting one. After decoding the 

signal received from its peer (another SU), the 

secondary receiver subtracts the signal of its peer from 

the overall received signal. After that, spectrum sensing 

is carried out based on the remaining signal in order to 

decide about the presence/absence of the PU 

performance is affected by the SIC efficiency. In 

Another strategy for the LAT protocol is adopted in 

without using SIC. The sensing operation is performed 

by the receiving SU instead of the transmitting one. 

After decoding the signal received from its peer 

(another SU), the secondary receiver subtracts the 

signal of its peer from the overall received signal. After 

that, spectrum sensing is carried out based on the 

remaining signal in order to decide about the 

presence/absence of the PU. the literature, several 

models have been adopted to from another perspective, 

SIC necessitates additional hardware requirement. 

Auxiliary chain is mandatory in SIC-based receivers in 
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order to maintain the synchronization with the 

transmitter and to extract some necessary features to 

reduce the SI The additional hardware equipment 

increases the cost and the required power of the FDCR 

system compared to the HDCR Moreover, making the 

SS continuously may near- timely impact the energy 

efficiency of the system due to the additional power 

consumed by the SIC circuit and the SS itself. As a 

compromise, the period between two consecutive SS 

operations is configured based on the accepted energy 

efficiency of the system and the tolerable collision 

time with PU. Another parameter impacting the period 

between two consecutive SS operations is the 

probability that the PU returns active. When the PU is 

more likely to be absent for a long time, continuous 

monitoring is not efficient. Represent the received 

signal considering the impact of the RSI on the sensing 

performance Among the most used, we consider the 

following 

                y(n) = s(n) + x(n) + w(n) 

where s(n) is the SU signal received at RX, including 

the channel effect and the hardware imperfections     is 

the SIC efficiency, where 01; When = 0, then the RSI 

suppression is perfect while = 1 corresponds to the 

case of no RSI suppression 

After canceling the SI, a Test Statistic is applied on 

y(n). Usually, the Test Statistics used in HDCR can 

also be used for FDCR. As shown by Equation, the 

received signal in FDCR mode becomes the same as 

that of HDCR for ideal SIC Therefore, the SS 

performance under HDCR becomes an asymptotic 

case for FDCR [68]. The last statement is true for the 

case of a single SS operation. However, FDCR can 

continuously perform SS while sensing in HDCR is 

not applied during the transmission period of SU. 

Knowing that the PU can become active at any time, 

the collision rate with PU is highly reduced in FDCR 

compared to HDCR. 

FDCR and HDCR before making a decision on the 

channel state. After receiving the signal, a Test 

Statistic is evaluated in HDCR, while SIC precedes the 

Test Statistic evaluation in FDCR in order to reduce 

the SI effect on the reliability of the Test Statistic. 

 

Transmit-Receive 

Based Transmit-Receive Even though the SS is not 

performed by SUs in IS-based TR mode, PU detection 

remains applicable by employing IS instead of SS. IS 

based on the capability of the secondary receiver to 

decode the message of its peer. When PU becomes 

active, it causes interference to the secondary 

transmission resulting in the inability of the second 

receiver to decode the message of its peer. Thus, if the 

decoding process is successful, the PU is assumed 

absent, while PU is detected as active otherwise. The 

main advantage of TR is that it doubles the spectrum 

efficiency since the same band is used for both 

transmitting and receiving data. However, it exposes 

the PU to a high risk of harmful interference as IS not 

efficient at low PU’s SNR  

 
Another strategy for the LAT protocol is adopted in 

without using SIC. The sensing operation is performed 

by the receiving SU instead of the transmitting one. 

After decoding the signal received from its peer 

(another SU), the secondary receiver subtracts the 

signal of its peer from the overall received signal. After 

that, spectrum sensing is carried out based on the 

remaining signal in order to decide about the 

presence/absence of the Purdon another perspective, 

SIC necessitates additional hardware requirement. 

Auxiliary chain is mandatory in SIC-based receivers in 

order to maintain the synchronization with the 

transmitter and to extract some necessary features to 

reduce the SI The additional hardware equipment 

increases the cost and the required power of the FDCR 

system compared to the HDCR Moreover, making the 

SS continuously may impact the energy efficiency of 

the system due to the additional power consumed by the 

SIC circuit and the SS itself  As a compromise, the 

period between two consecutive SS operations is 

configured based on the accepted energy efficiency of 

the system and the tolerable collision time with PU. 

Another parameter impacting the period between two 

consecutive SS operations is the probability that the PU 

returns active When the PU is more likely to be absent 

for a long time, continuous monitoring is not efficient. 

The secondary system starts with the TR mode it makes 

a traditional SS period in order to detect the vacancy of 

the primary band. This SS operation lasts while the PU 
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band once the PU band is identified as vacant, SUs 

start communicating using IBFD. In order to minimize 

the interference to the PU, an asynchronous 

transmission was proposed in asynchronous 

transmission, one of the two communicating SUs 

makes a delay of with respect to the transmitted frame 

of its peer. As presented SUs at the end of each frame 

are delayed by with respect to each other. For an 

optimal value the CR network makes a decision on the 

PU status each T sec instead of T sec if synchronous 

transmission is adopted between SUs. This 

asynchronous transmission helps the SUs to enhance 

monitoring the PU activity as the latter may access the 

channel at any time. 

 

SS-based Transmit-Receive 

Even though TS and IS-based TR are the most popular 

schemes in FDCR, another TR mode based on SS has 

been introduced. Performing SS in TR faces the 

problem of receiving the secondary signal of the peer 

SU in addition to the SI of the SU. The SIC is capable 

of highly reducing the SI signal. Yet, the signal of the 

peer SU still exists. The received signal based TR is 

given as follows 

y(n) = s(n) + x(n) + r(n) + w(n) 

The variables in Equation are similar to those in 

Equation, except for the r(n)that stands for the peer SU 

signal including the channel effect. 

In a mechanism is proposed to apply SS-based TR that 

exchanges the sensing parameters between the two 

communicating SUs. When SU1 sends the signal to 

SU2, it sends concurrently the energy amount of the 

transmitted samples to its peer via a control channel. 

On the other side, SU2 computes the energy of the 

received samples and subtracts the known amount of 

the energy of its peer. However, this mechanism 

requires an accurate estimation of the channel between 

the communicating SUs. The proposed mechanism 

may also fail to detect the PU when the SU SNR is 

high. 

The work presented in aims to overcome the problem 

of PU’s low SNR that faces the TR mode by adopting 

SS instead of the IS. One of the two communicating 

SUs should remain silent only during the SS period in 

order not to disturb its peer. Hence, the sensing 

operation is performed in an alternative manner 

between the two communicating SUs. When the first 

SU performs the SS, it continues transmitting and 

canceling its SI Meanwhile, the second SU remains 

silent. This mechanism is regularly alternating between 

the two Sus 

In SS-based TR is proposed for OFDM-based FDCR. 

Two communicating SUs should avoid the use of some 

dedicated sub-carriers (null sub-carriers) in order to 

detect the PU status. When the PU becomes active, it 

might cover the entire band including the dedicated sub-

carriers. As these sub-carriers do not exhibit any 

secondary transmission, SU may monitor PU by 

evaluating the energy of the received signal on these 

sub-carriers. Note that no SIC is required to be done on 

the sub-carriers where the SS is applied since no 

secondary transmission is made on them. The cost to 

pay in this SS-based TR mechanism is the loss in the 

frequency resources, i.e., the null sub-carriers 

Table presents a comparison among the CR operating 

modes with respect to the essential features related to 

the SU performance and the impact of SU’s 

transmission on PU. The IS-based TR presents a poor 

performance at low PU SNR in contrast to other modes. 

HDCR may lead to a long collision time with PU due to 

its blindness during the transmission, while FDCR 

modes can perform the sensing continuously. The need 

for SIC to perform the SS exists in TS mode and some 

approaches in SS-based TR mode. Note that SIC can be 

used for the sake of establishing bidirectional 

communication between the peer SUs in TR modes 

 

Learning Techniques for Spectrum Sensing 

Machine Learning (ML) and Deep Learning (DL) are 

among the most powerful tools in solving complex 

classification problems. More specifically, they have 

been employed in wireless communication to 

efficiently manage the spectrum and the power 

resources, and to ensure high quality of services for the 

mobile users in the CR domain, one of the objectives of 

using ML and DL is to enhance the SS performance. 

Learning techniques usually use two phases: learning 

and prediction. For SS applications, the data provided 

in the learning phase is related to the PU features and 

the SU sensing parameters (such as the Test Statistics, 

SNR, geo-location, etc.), whereas the prediction phase 

could be related to the sensing outcome, the power 

efficiency, the functioning model to be adopted and 

other issues. 

The spectrum resources can be gained by allowing non-

license users i.e., Secondary Users (SU) to share a 

license user i.e.., Primary Users (PU) bands such that 

Pus should be always protected from interference. 
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Therefore, CR users must consider protecting the PIs 

over any other interest, there are the CR paradigm by 

which SU can share Pus spectrum band these are 

overlay, underlay and interweave. For overlay and 

underlay schemes a SU can exist with the Pus 

spectrum band these are interference since underlay 

scheme transmission power of should be never exceed 

some limit., while in overlay scheme there is no such 

constraint however the SU should have a full 

knowledge about the PU signal to eliminate 

interference. In the interweave scheme SU allowed to 

transmit if and only if a PU is not as spectrum band 

nevertheless if the PU resumes its activity the SU 

should leave the spectrum band by either switching to 

another band or by ceasing its activity if no vacancy 

exists 

The main objective of using IOT system is to connect 

numerous heterogeneous devices, and system together 

to provide some smart services with minimal device 

resource requirement power hardware complexity and 

cost expenses to achieve the connectivity between 

devices should always maintained in all circumstance. 

This motivate us to focus on SS and spectrum sharing 

process in CR-based IOT. 

The proper SS approach for the CR based IOT device. 

More ever determine the spectrum band allocation 

precisely to satisfy the PU protection constrains when 

exploiting the vacant spectrum band to achieve those 

two goals the following factors have to be considered. 

1. IOT application 

2.Enabling technology  

 

In classical SS, SU has to determine the threshold for 

the Test Statistic before making a decision on the PU 

presence. This threshold may be calculated based on 

target false alarm and detection rates. Thus, several 

statistical parameters related to the noise, the channel, 

and the PU signal should be a priori known. ML and DL 

can overcome the need for the a priori statistics 

knowledge in literature, the majority of work focuses 

on tuning ML or DL systems with numerical statistics 

of two hypotheses: H0, where PU is assumed to be 

absent, and H1, where PU is assumed to be active. 

Here in after, we discuss the use of learning techniques 

in local and cooperative spectrum sensing. 

 

Local Spectrum Sensing 

Local sensing corresponds to the case where the single 

node senses the spectrum and makes its own decision. 

In this context, the work of seeks to discriminate 

between H0 and H1 hypotheses by being trained with 

the extracted cyclic features of PU’s signal in low SNR 

conditions. This ensemble classifier is based on 

decision trees and using Wideband SS is tackled in 

where three techniques are presented neural networks, 

expectation maximization and k-means. The techniques 

are used to detect the presence of one or multiple PUs 

in a wideband spectrum and spectrum sensing have 

important role. 

In order to enhance the accuracy of the ML system in 

making a decision on the PU status, Hybrid SS (HSS) 

has been proposed. HSS detects the presence of PU 

using simultaneously several detectors. HSS can 

compensate the weak points of a given detector with the 

advantages of another one. For instance, ED suffers 

from the noise uncertainty at low SNR, which is 

overcome by ACD. In return, ACD is adversely 

impacted by the low oversampling rate of the PU signal, 

while ED  

In artificial neural networks have been applied in order 

to perform HSS. Training is done using the Test 

Statistics of two detectors related to H0 and H1, where 

ED and CSD are used in while ED and likelihood ratio 

statistics are used in the work of extends the HSS-based 

DL for 6 detectors showing the effectiveness of such 

techniques in detecting PU at very low SNR. HSS is 

exploited in in order to introduce one-class-based 

learning. Data of several detectors are collected under 

H0 to learn the detection system of the H0 class. The 

training phase is done using only data related to the 

noise without the need for PU-related data. In the 
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prediction phase, when the predictor detects an outlier 

of H0 class, then PU is assumed to be active 

However, these techniques, especially those related to 

DL, have a computational cost. Some work deals with 

the trade-off between accuracy and computational 

complexity when using DL for SS in order to ensure 

high energy efficiency  

Furthermore, ML and DL are used for spectrum 

perceptions, i.e., prediction of the occupancy of the PU 

channels. For example, a geo-frequency-temporal map 

on the PU activities can be constructed using learning 

techniques. The guides the spectrum access and 

enhances the SS performance. Using the prediction of 

the spectrum vacancy, SU can wisely select the 

communication channels to reduce handover rate and 

avoid interference 

 By contrast, when a handover happens, SU may target 

a channel where PU is expected to be absent to make 

SS before accessing This makes the handover safer 

and faster. Moreover, when PU is likely to leave the 

channel for a long time, SU may increase the period 

between two consecutive SS operations leading to 

economizing its energy and enhancing the spectral 

efficiency. The channel prediction may differ from a 

geo-location to another accordingly, a mobile SU 

would switch from a channel to another based on its 

prediction of the PU behavior. In addition, the learning 

techniques proved their effectiveness in managing the 

priority of the SUs in accessing available channels. 

The SUs may be competitors or cooperatives in 

sharing the limited frequency resources. Thus, an 

efficient accessing policy is required in order to fairly 

distribute the available frequency resources over the 

SUs. 

 

Cooperative Spectrum Sensing 

In Cooperative SS, several SUs cooperate in order to 

make a final decision on the PU state. Two schemes of 

Cooperative SS can be distinguished. 

(1) Hard Decision Scheme, where each SU makes an 

individual decision on the PU state, then decisions of 

all SUs are combined at a Fusion Center (FC) to 

outcome a final decision. 

(2) Soft Decision Scheme, where the FC gathers the 

Test Statistics calculated at the SUs, and combines 

them in order to compare a final Test Statistic to a 

threshold and make a decision on the primary channel 

ML and DL are introduced in cooperative SS in order 

to tackle several problems such as the correlated 

results between the cooperating SUs, the malicious 

results provided by some SUs, giving the SUs close to 

PU more credibility over far SUs, and other issues. In 

ML techniques such as the K-Means and Support-

Vector Machine (SVM) are used to distinguish between 

the H0 and H1 hypotheses in a cooperative SS. Two 

low-dimension probability vectors related to both H0 

and H1 of ED are used to train the system.  SVM is used 

to set the threshold curve between H0 and H1 clusters. 

K-nearest-based ML is adopted in for cooperative SS, 

where the proposed mechanism is divided into two 

phases: training and classification. The global decision 

of the PU presence/absence taken at the end of the 

classification phase takes into consideration the 

reliability of each CR user when reporting to the fusion 

center during the training phase. 

A convolutional Neural Network-based cooperative SS 

is proposed in where the outputs of the SUs are 

combined in Hard and Soft Combining Schemes. 

Spatial and spectral correlations of the channels are 

taken into account in order to make the system more 

robust. The SUs, which are close to each other, may 

report correlated decisions to the Fusion Center. This 

negatively impacts the sensing performance when these 

SUs exhibit severe fading  

The authors in propose using the learning techniques for 

cooperative SS in a non-orthogonal multiple access 

context in order to overcome the physical layer 

complexity of such access scheme. Reinforcement 

learning is adopted in to perform the cooperative SS 

The reinforcement learning scans the PU channels to 

form a dynamic scanning preference The helps to 

reduce the scanning overhead and access delay Using 

learning techniques in spectrum monitoring for CR is 

still open to investigation The switching among the 

channels to sense, the switching between functioning 

modes (TS, TR, HDCR, etc.), the sensing rate, and 

other features are to be tackled by learning techniques. 

 

Wireless Sensor Network and Cognitive Radio 

The use of WSN/IOT is substantially expanding, and it 

is expected to cover almost all of the life sectors: 

monitoring purpose, traffic, e-health applications, smart 

homes, agriculture, etc. CR and WSN/IOT can 

significantly benefit from each other. On the one hand, 

the wide development of WSN/IOT can be exploited by 

the CR in monitoring the PU channel. For example, 

Spectrum Sensing as a Service (SSS) emerges as a new 

model On the other hand, the huge number of 
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WSN/IOT devices give rise to high demand on 

spectral resources. Here, CR technology can be 

considered as a solution to its dynamicity in enabling 

spectrum sharing  

 

Spectrum Sensing as a Service 

When considering SSS, the process is done by WSN 

node(s) related to the SS provider and not by the SU 

in the secondary network. The SS provider then 

informs the secondary network with the PU channel 

status Accordingly, the secondary network takes the 

decision on transmitting on that channel or not. SU 

may operate in a wide range of frequency channels, 

therefore, WSN should have the necessary electronic 

circuitry. 

 

The contribution survey   are 

Reviewing the recent existing work on the field SS and 

sharing for CR-based IOT. 

1. Discussing the design factors of CR-based IOT 

system and its main component. 

2. Presenting and categorizing the SS approaches for 

IOT applications. 

3. Regulations 

IOT network employ manty different enabling 

technologies for establishing the communication 

between the device in the network. Radio frequency 

identification wireless sensor network short range 

coverage technologies the determine the wireless 

Sensor Network topology Frequency resources. Thus, 

an efficient accessing policy is required in order to 

fairly distribute the available frequency resources over 

the SUs. 

 

Cooperative Spectrum Sensing 

In Cooperative SS, several SUs cooperate in order to 

make a final decision on the PU state. Two schemes of 

Cooperative SS can be distinguished. 

(1) Hard Decision Scheme, where each SU makes an 

individual decision on the PU state, then decisions of 

all SUs are combined at a Fusion Center (FC) to 

outcome a final decision. 

(2) Soft Decision Scheme, where the FC gathers the 

Test Statistics calculated at the SUs, and combines 

them in order to compare a final Test Statistic to a 

threshold and make a decision on the primary channel 

ML and DL are introduced in cooperative SS in order 

to tackle several problems such as the correlated 

results between the cooperating SUs, the malicious 

results provided by some SUs, giving the SUs close to 

PU more credibility over far SUs, and other issues. In 

ML techniques such as the K-Means and Support-

Vector Machine (SVM) are used to distinguish between 

the H0 and H1 hypotheses in a cooperative SS. Two 

low-dimension probability vectors related to both H0 

and H1 of ED are used to train the system.  SVM is used 

to set the threshold curve between H0 and H1 clusters. 

K-nearest-based ML is adopted in for cooperative SS, 

where the proposed mechanism is divided into two 

phases: training and classification. The global decision 

of the PU presence/absence taken at the end of the 

classification phase takes into consideration the 

reliability of each CR user when reporting to the fusion 

center during the training phase. 

A convolutional Neural Network-based cooperative SS 

is proposed in where the outputs of the SUs are 

combined in Hard and Soft Combining Schemes. 

Spatial and spectral correlations of the channels are 

taken into account in order to make the system more 

robust. The SUs, which are close to each other, may 

report correlated decisions to the Fusion Center. This 

negatively impacts the sensing performance when these 

SUs exhibit severe fading. 

The propose using the learning techniques for 

cooperative SS in a non-orthogonal multiple access 

context in order to overcome the physical layer 

complexity of such access scheme. Reinforcement 

learning is adopted in to perform the co-operative SS. 

The reinforcement learning scans the PU channels to 

form a dynamic scanning preference list. This list helps 

to reduce the scanning overhead and access delay Using 

learning techniques in spectrum monitoring for CR is 

still open to investigation. The switching among the 

channels to sense, the switching between functioning 

modes (TS, TR, HDCR, etc.), the sensing rate, and 

other features are to be tackled by learning techniques. 

 

Wireless Sensor Network and Cognitive Radio 

The use of WSN/IOT is substantially expanding, and it 

is expected to cover almost all of the life sectors: 

monitoring purpose, traffic, e-health applications, smart 

homes, agriculture, etc. CR and WSN/IOT can 

significantly benefit from each other. On the one hand, 

the wide deployment of WSN/IOT can be exploited by 

the CR in monitoring the PU channel. For example, 

Spectrum Sensing as a Service (SSS) emerges as a new 

model On the other hand, the huge number of 

WSN/IOT devices give rise to high demand on spectral 
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resources. Here, CR technology can be considered as 

a solution to its dynamicity in enabling spectrum 

sharing. 

 

Spectrum Sensing as a Service 

When considering SS, the process is done by WSN 

node(s) related to the SS provider and not by the SU 

in the secondary network. The SS provider then 

informs the secondary network with the PU channel 

status Accordingly, the secondary network takes the 

decision on transmitting on that channel or not. SU 

may operate in a wide range of frequency channels, 

therefore, WSN should have the necessary electronic 

circuitry to reconfigure according to the sensing tasks 

requested by the secondary network. 

Moreover, on-demand responsiveness of the WSN 

network is of high importance, since the SS 

information on the PU channel should be relevant, and 

SU should be up-to- date continuously This challenge 

faces the limitation associated to the WSN and the IOT 

networks protocols such as WAN, since such a 

network does not support the on-demand data 

communication  The work of   some modifications on 

WAN protocol to support the on-demand SS. 

The selection of the WSN nodes that perform the SS 

is also a serious challenge due to the energy constraint 

imposed by the massive range of battery-powered 

nodes. Several strategies may be adopted to select the 

nodes responsible for performing the SS: random- 

based selection, SNR-based selection, battery’s 

energy level-based selection, hybrid criteria- based 

selection. of the strategies has its impact on the SS 

performance and on the lifetime of the network for 

instance, SNR-based strategy ensures high SS 

performance but it may adversely impact the lifetime 

of the nodes. By contrast, the battery’s energy level-

based selection does not take into consideration the 

SNR of the primary signal, which may lead to poor SS 

performance. 

From another perspective, it is important to study the 

contract between the secondary network and SSS 

provider to ensure the satisfaction of both entities. In 

this context, block chain technology is used to set the 

required SS parameters via smart contract, such as 

where the nodes of the WSN are rewarded only if they 

accurately perform sensing SS remains an open 

research topic to explore. Several parameters are not 

studied yet, such as the impact of the delay of sending 

the sensing results from the SS provider to the 

secondary network on the collision rate between SU and 

PU. In addition, the cost of SS in terms of the payment 

and the collision rate has to be further investigated. 

Large number of SS operations leads to high protection 

of PU against secondary interference, but it may be 

more expensive for the secondary network. In addition, 

it is important to study mobile SU in the context of SS, 

where the mobile SU might leave a WSN to another. 

This will require handover execution in order to keep 

the SU aware of the PU activity. In addition, the SU 

needs to switch to a new vacant channel if PU returns 

active. Here, an efficient and fast cooperation strategy 

between the SS provider and the SU network should be 

designed in order to find an available channel and to 

switch smoothly from one channel to another. 

 

Dynamic Spectrum Sharing for WSN communication 

The increasing popularity of using WSN/IOT devices 

requires better utilization of the limited frequency 

resources. Dynamic Spectrum Sharing using CR has 

been proposed to overcome the limitation of the 

available frequency resources in the context of WSN. 

In Dynamic Spectrum Sharing for WSN 

communication, CR considers the WSN nodes as SUs. 

By monitoring the PU channel, the WSN nodes bear 

extra energetic burdens, since more energy 

consumption is needed to accomplish the SS task. In 

fact, energy consumption is of high importance for the 

IOT/WSN networks, since the nodes are operating 

under protocols to extend their lifetime to several years. 

For instance, in Low Power Wide Area Network 

(LPWAN) IOT networks, the lifetime of a sensor may 

exceed 5 years due to the transmission specifications, 

especially the small duty cycle of less than 1% as in 

LAR networks  

Adapting the CR mechanism to the WSN/IOT networks 

is challenging due to several issues such as providing 

the nodes with the available frequency bands, deploying 

the SS capability, selecting the nodes responsible of 

spectrum sensing, etc. Several studies tackle the 

implementation of CR in an IOT network and the 

standardization of the CR features required to perform 

the CR mechanism such as implementing hardware and 

protocols. This includes switching from one frequency 

band to another depending on the sensing process. 

Indeed, multiband access becomes necessary due to a 

large number of WSN/IOT devices, and having several 

available frequency channels makes the channel 

switching simpler and more efficient 
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The energy-throughput optimization of the CR-IOT is 

investigated in where cooperative SS is adopted. 

Cooperative sensing necessitates the participation of 

several SUs/nodes in the SS. Despite the sensing 

improvement, cooperative sensing may impose 

additional energy consumption challenges for the 

participating SUs related to the continuous SS and 

reporting operations. The adoption of local sensing or 

cooperative sensing is discussed in under different 

sensing conditions and applied to CR-based NB-IOT 

technology with slotted-ALOHA protocol. The study 

of concludes that it is more convenient to use local SS 

when SNR is relatively high and limits the use of 

cooperative SS to the situations of low SNR. 

Given that the CR functionality is implemented, new 

challenges emerge such as in- creasing the throughput 

and the spectrum efficiency and reducing the energy 

consumption of the wireless nodes. Dynamic licensed-

unlicensed access is proposed in where the CR-based 

nodes may access both licensed and unlicensed bands 

in a dynamic mechanism. Such a mechanism may 

lower the demand on the unlicensed bands (where the 

WSN/IOT nodes operate usually) by sharing available 

licensed bands. 

In an energy-throughput trade-off of wireless sensor 

network is proposed in the context of cooperative SS 

and dedicated low-power devices. The latter study 

focuses on minimizing the consumed energy while 

satisfying the requirements of secondary throughput 

and primary signal detection. 

To compensate the additional energy consumed by the 

CR functionalities, such as SS and spectrum sharing, 

Energy Harvesting has been proposed in order to 

enhance the energy efficiency of the CR-based IOT 

system  

CR seems a promising mechanism to address the high 

demand of the WSN/IOT networks on the frequency 

resources. Yet, CR-IOT should prove its energy 

efficiency as well as the spectral efficiency especially 

for industrial applications The deployment pattern and 

the transmission protocol play an essential role to 

minimize the energy consumption and reduce the 

interference between nodes leading to enhance the 

energy efficiency of the CR-IOT network. However, 

several challenges are to be investigated such as 

suitable protocol to exchange the data in two ways: 

central entity-sensing SUs and central entity-

transmitting SUs. First, the central entity should 

inform the sensing SUs of the channel to be sensed. 

Then these SUs should respond back by their decisions. 

This mechanism imposes time and frequency 

synchronization, e.g., control channel. Second, after 

identifying the available channel, the SUs/nodes, which 

need to transmit, should be informed by adequate 

available channels to configure their circuit 

accordingly. This configuration necessitates the proper 

electronic circuitry that is able to meet the dynamic 

reconfiguration. In addition, efficient resource 

management by the central entity is required to fulfill 

the node demands in terms of data transmission and 

interference reduction. 

 

Cognitive Radio Application for 5G and Beyond 5G 

The 5th generation (5G) of mobile technologies is 

expected to provide users with communication, very 

low latency and high reliability. 5G networks are 

designed to operate on two types of channels: the 

licensed channels and the unlicensed channels  

 

3GPP Technologies 

Reaching 5G requirements is challenging especially 

those related to the massive connectivity and the Ultra-

Reliable and Low Latency Communication (URLLC) 

CR is a potential candidate to help to enhance the 

utilization of the spectrum while protecting users in 

dense and heterogeneous networks  

In Release 13 of the 3GPP, LTE are provided with the 

ability to operate on the unlicensed band such as 2.4 

GHz and 5.8 GHz in order to open new spectral 

resources Two types of unlicensed LTE can be 

distinguished: LTE-Unlicensed (LTE-U), developed by 

LTE-U Forum and used in USA, Korea and India, and 

LTE-Licensed Assisted Access (LTE- LAA), 

developed by 3GPP and used in Japan and Europe  The 

use of unlicensed LTE is envisaged to extend to 

essential 5G applications such as the enhanced mobile 

broad band (ebb), massive machine-type 

communication (mimic), and URLLC LTE-U and LTE-

LAA may cause severe interference to the technologies 

operating on the unlicensed bands, especially WIFI. 

Thus, an efficient mechanism is essential to manage the 

resource allocation and to protect the technologies from 

interfering with each other  

To protect WIFI against LTE interference, both LTE-U 

and LTE-LAA adopt Dynamic Channel Selection 

(DCS) by targeting the least interfering channels of the 

unlicensed bands to transmit over them However, DCS 

is not always applicable since no clean channel may be 
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available. LTE-U uses Carrier Sensing Adaptive 

Transmission (CSAT), which is based on observing 

the channel for a certain time (usually between 0.2 to 

10 sec) in order to define a time cycle. Then, LTE-U 

system transmits in a fraction of the cycle and turns 

the transmission off in the remaining duration. 

Besides, CSAT, LTE-LAA uses LBT to access the 

channel. Even though LBT is a SS technique and is 

applied in CR, more developed CR-based mechanisms 

have been proposed to be adopted by the unlicensed 

LTE in order to protect Wi-Fi from the interference In 

such models, Wi-Fi nodes are considered as PUs while 

the LTE-U users are considered as in a CR- based 

framework is proposed to construct the spectrum 

availability map. Idle LTE nodes perform SS on the 

unlicensed channels and send the channel status to the 

LTE base station periodically. Accordingly, the Wi-Fi 

access-points locations and transmitting powers can be 

obtained and exploited later on to serve LTE-U. Joint 

spectrum sharing and aggregation is proposed to 

utilize the TV white spaces, licensed spectrum and 

LTE-U bands. TV and Wi-Fi systems are considered 

PUs in the TV white spaces and the LTE-U bands 

respectively. A co-existence strategy is developed to 

fairly utilize and access the TV and the LTE-U bands 

based on the sensing capability of the LTE network. in 

sensing is used to reduce interference in ultra-dense 

small-cell deployment scenario, which introduces CR 

as a helpful technique for the planning of 5G and B5G 

networks. 

 

Compressive Sensing 

With the existence of various applications that require 

high spectral resources in 5G such as smart cities, 

smart agriculture, monitoring purpose, etc., the need 

for frequency resources becomes extremely high. This 

need will continue growing with the coming of the 

B5G and the Internet of Everything (IoE). In this 

regard, SS that focuses on one narrow channel, such 

as ED and CSD, may not be sufficient. Instead, Wide 

Band Sensing (WBS) which is able to explore a wide 

frequency band, will be a good candidate to meet the 

frequency needs of the CR network. From the CR 

point of view, WBS ensures a high data rate for the 

SUs since the data rate is directly related to the 

bandwidth. In addition, WBS provides CR with the 

ability to satisfy multiple SUs requirements at the 

same time. A large available band for a CR makes the 

handover operation simpler and faster. 

However, WBS imposes several challenges at the 

hardware complexity level in classical WBS that 

respects the wideband is divided into a set of 

narrowband channels using filtering blocks. Then, a SS 

technique is concurrently applied on each channel to 

diagnose its availability. Despite the low delay in 

making the decision on the channels’ availability, this 

approach is very costly from a hardware point of view 

since it needs high filtering capability as an alternative, 

wavelet techniques have been proposed to perform the 

WBS. They are used to detect the irregularities of the 

wideband, in which the available channels are located. 

However, this approach suffers high computational 

complexity  

To overcome the constraint, Compressive Sensing (CS) 

has been proposed to perform the WBS. CS consists of 

three phases: sensing measurements, signal 

reconstructing, and finally performing SS on the 

reconstructed signal. 

Recently, CS gained a lot of attention as in the case of 

joint communication and radar sensing in 5G mobile 

networks as for the SS, the use of CS focuses on the 

IOT applications, where the number of devices is 

although CR solves the problem of the high sampling 

rate, it may suffer from the NU problem at the 

performance level and power and complexity 

limitations at the implementation level. Low-cost 

systems and battery-powered devices, such as the IOT 

devices, may not afford the high complexity and 

hardware requirements of CS. For this reason, many 

studies focus on analyzing and lowering the cost of 

applying the CS in IOT networks 

 

Beamforming-Based Communication 

Massive MIMO and Ultra-Dense Network deployment 

are key enablers of 5G aiming at maximizing the 

spectrum reuse in this context, the base stations adopt 

tight beamforming techniques looking to maximize the 

transmit power in the direction of the receiver. 

Moreover. Cell-free networks have recently been 

proposed to serve a high number of users in a cellular 

network. A key enabler of this technology is the beam 

forming tech. 

Here, CR may exploit a new dimension for its 

opportunistic transmission in addition to the time-

frequency dimension: the spatial dimension. An 

example of new spatial dimension of CR is SU becomes 

provided with the ability to transmit the data 

concurrently with PU but under the constraint that the 
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SU transmits the data in a different beam than that of 

PU. 

When the transmission beam of the PU is well 

identified, SU may exploit the remaining space in 

order to transmit the data on a non-overlapping beams 

base SUs, in this case, should be equipped with a 

multi-antenna system in order to adjust their beam far 

from the primary receiver to avoid interference. In this 

context, joint sensing and localization of PU becomes 

of high importance since the localization of PU 

transmitter may facilitate the mission of SUs in 

identifying the beam and thus to diagnose the spatial 

temporal availability of the spectrum  Recently, some 

work has been introduced to enable spatial SS by 

identifying the PU’s location and adjusting the SU’s 

beam using the received power at SUs surrounding the 

PU In this regard, estimation techniques have to be 

more developed in order to estimate the PU beam 

blindly or in the case where little information about 

PU transmission is available Nevertheless, 

identification of the PU transmission remains a 

complicated task for the SUs, especially where no 

cooperation is available between secondary and 

primary networks. In addition, interference caused by 

the secondary transmission should be carefully 

controlled since it is inevitable even though the 

transmission is beamforming-based. The interference 

level depends on the number of transmit antennas at 

the SUs, the distance between SU and PU and the 

angle of arrival of the secondary signal at the primary 

receiver. Accordingly, the transmit power and the 

beam of SU transmission should be adjusted. 

The use of WSN/IOT is substantially expanding, and 

it is expected to cover almost all of the life sectors: 

monitoring purpose, traffic, e-health applications, 

smart homes, agriculture, etc. CR and WSN/IOT can 

significantly benefit from each other. On the one hand, 

the wide deployment of WSN/IOT can be exploited by 

the CR in monitoring the PU channel. For example, 

Spectrum Sensing as a Service (SSS) emerges as a 

new model On the other hand, the huge number of 

WSN/IOT devices give rise to high demand on 

spectral resources. Here, CR technology can be 

considered as a solution to its dynamicity in enabling 

spectrum sharing. 

 
 

Future Challenges 

The main philosophy of CR is to dynamically share the 

spectrum among different wireless communication 

technologies. Accordingly, SS for CR is highly 

impacted by the advancement and growth of these 

technologies. Wireless communication is undoubted 

evolving in many ways including infrastructure 

deployment (e.g., massive deployment of small cells), 

system operation and management (e.g., self-organized 

networks), new concepts (e.g., cell-free systems), new 

technologies (e.g., intelligent reflecting surfaces) and 

many other techniques. Thus, SS should keep up with 

the evolution progress. In the following, we present 

several future challenges related to applying and 

developing SS for the new trends of CR. 

1.Channel Coding for Interference Sensing is mainly 

applied in the TR mode of the FDCR. Being able to use 

only one available channel to establish bidirectional 

communication between two SUs, TR becomes very 

attractive since it doubles the frequency efficiency 

compared to TS mode and HDCR .TR uses signal 

decoding to reveal the PU status, which depends on the 

adopted channel coding technique. The weak technique 

may deteriorate the performance of the secondary 

network, while the strong technique may allow SU to 

decode the received signal even if PU is active. Here, 

the challenge becomes how to choose the optimal 

channel coding technique that matches the quality of 

service of SUs and, at the same time, does not prevent 

SU from detecting PU 

 

2.Switching protocols between CR functioning modes: 

Existing techniques for switching from a CR mode to 

another only take into account PU statistics However, 

other parameters may be taken into consideration such 

as the energy and frequency resources, since each mode 

has different require- mends. Modes that are based on 

SIC, such as TS and TR, require more hardware and 
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energy resources. This is not always available, 

especially for the battery-powered devices, which are 

planned to serve for several years such as the LPWAN 

IOT devices. The adoption of a mode depends on the 

available frequency resources: TR may be one of the 

good choices since it requires only one channel to 

establish bidirectional communication between two 

peer SUs, but it suffers poor sensing performance at 

low PU SNR. Thus, both frequency and energy 

efficiencies are important factors that should be taken 

into account to make a suitable choice of the mode to 

adopt. With this large number of parameters, learning 

techniques can be extremely useful to indicate the 

most suitable mode to adopt by the SUs. 

 

3. Access Strategy for IOT/WSN networks: 

In IOT applications, contention between SUs is high 

due to the large number of sensors. Thus, the adopted 

spectrum sharing strategy in such application becomes 

of high importance to effectively manage the access of 

different types of sensors This strategy may be related 

to the data type to be sent by the sensor, the 

redundancy of the data (redundant data could be 

ignored or compressed) and the criticality. Sensors 

looking for transmitting critical data, especially those 

related to natural disasters and e-healthcare, may be 

prioritized over the other sensors. A strategy giving 

the sensors a weight is a common approach in WSN to 

alleviate interference Such a strategy may be useful in 

CR-IOT applications to manage the access of the 

nodes on the available frequency channels and 

maximize spectral efficiency. 

4.Exchange Protocol of SS data for IOT/WSN 

Developing adequate protocols for CR-IOT systems is 

essential to manage the ex- change between the central 

entity of the IOT network and the node .this includes 

requests for nodes to sense a given channel and 

informing the concerned nodes with the channel 

availability updates. For sensing requests, the energy 

need of the IOT nodes should be highly considered 

especially when the nodes are battery- based. In this 

regard, selecting the sensors to sense the channel, the 

number of sensing processes per day and the maximal 

sensing observation time of the sensor should be 

determined by the central entity of the IOT/WSN 

network to ensure effective utilization of the 

resources. Moreover, the nodes that want to send data 

should be informed by the central entity about the 

available channels a priori. Thus, effective protocols 

should be designed to ensure the time and the frequency 

synchronization between the end-nodes and the central 

entity 

 

5. Use of Intelligent Reflecting Surfaces: 

SS may benefit from the emerging Intelligent 

Reflecting Surface (IRS), which is expected to play an 

essential role in 5G and B5G technologies IRS can 

passively reflect the signal towards a target receiver. 

IRS is a potential candidate to help to overcome the 

hidden PU problem by reflecting the PU signal towards 

the SUs, which suffer from low PU SNR. Several 

challenges are expected in using IRS to assist SS, since 

the optimal configuration of the IRS system depends on 

the channel between PU and IRS, and SU, and PU and 

SU. In a context, where no cooperation is avail- able 

between SU and PU, channel estimation becomes hard 

to apply. Blind channel estimation and cascaded-

channel estimation could be help the IRS application for 

SS assistance  

 

6. Sensing the Spatial Dimension for CR 

Beam-based sensing of PUs becomes more and more 

important for SUs since it provides the SU with the 

spatial availability of the spectrum. However, the PU’s 

transmission beam estimation remains challenging for 

SU especially where no co-operation is available with 

PU Even when the PU beam is known, adjusting the SU 

beam is challenging too due to the inevitable 

interference caused by the SU transmitter to the SU 

receiver. Thus, the transmit power, the beam direction, 

and the number of transmit antennas should be carefully 

adjusted. However, due to the need for multiple 

antennas to adjust the SU beam, applying beam-based 

CR is challenging for low-cost IOT/WSN devices. 

 

7. Towards Intelligent Spectrum Sensing: With the 

massive small cell deployment and Massive Machine-

Type Communication in 5G and B5G, the binary 

decision of the SS may not be efficient. In such a 

deployment the SS output may be vulnerable to a high 

false alarm rate due to the inter-cell interference, i.e., a 

given channel is free in the cell where SU exists, but SU 

may falsely detect the presence of PU due to the inter-

cell interference cell. For this reason, a more intelligent 

and flexible SS technique should be adopted to 

overcome the homogeneity assumption of the PU 

coverage. This means that the SU should be able to 

diagnose the channel as free even though PU is detected 
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in some circumstances. Moreover, SS should be 

extended to deal with spectrum perception and 

environment dynamics learning. This is extremely 

important especially for battery-power devices to 

enable joint channel sensing and access. 

 

CONCLUSIONS 

 

In this survey, we presented the fundamental 

principles and motivations of applying spectrum 

sensing in cognitive radio networks. The concepts of 

half-duplex and full-duplex cognitive radio are 

presented. The main criteria exploited by SU to make 

the PU signal detection are presented and. different 

modes of operation for the case of full- duplex are 

described. Moreover, the use of learning techniques 

are at both local and cooperative levels. Then, the 

potential of applying spectrum sensing in WSN/IOT 

network is investigated, in addition to the essential 

role of IOT/WSN in the Spectrum Sensing as a 

Service. We also discuss the use of cognitive radio in 

5G and B5G from spectrum allocation and frequency 

efficiency perspectives. Based on exhaustive 

surveying of the state of the art, we present several 

challenges and staggering points that need to be 

further investigated. 
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