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Abstract - Air  Pollution  is  turning  the  whole  world 

prematurely grey. The health effects of air pollution 

imperil human lives especially for at-risk population and 

those with respiratory illness and the fact is well- 

documented. Many researches proposed to estimate 

particulate matter values from smartphone images, 

given  that  deploying highly accurate air  pollution 

monitors  throughout a  city  is  a  highly  expensive. 

Departing from previous machine learning studies which 

primarily focus on pollutant estimation based on single 

day-time images, our proposed deep learning model 

integrates Residual Network (ResNet) with Long Short-

Term Memory (LSTM), extracting spatial-temporal 

features of sequential images taken from smartphones 

instead for estimating PM2.5 and PM10 values of a 

particular location at a particular time. Our 

methodology is as follows: First, images are obtained 

constantly with regular time intervals. Second, verified 

experimentally that any PM2.5 and PM10 values 

obtained remain constant within a radius of 500 meters. 

Third, the proposed ResNet-LSTM was constructed and 

extended by incorporating meteorological information 

and one short path. In future, our deep-learning image-

based air pollution estimation study will incorporate 

sequential images obtained from 24-hr operating traffic 

surveillance cameras distributed across all parts to 

provide full- day and more fine-grained image-based air 

pollution estimation for the city. 

 

I.INTRODUCTION 

 

PM2.5 and PM10 have presented great public 

health challenges given their devastating health 

impacts, especially for those who are constantly living 

under high of air pollution, such as China and India. 

Citizens in these countries are consistently exposed to 

high levels of air pollution due to rapid 

industrialization and urbanization. In response to this 

air pollution related health challenge, governments all 

over  the  world  have  set  up  regular  stationary air 

quality monitoring systems. Stringent air quality 

regulatory standards are put forward and air pollution 

reports are provided to inform the public the level of 

air pollution on a regular basis. For example, Pollutant 

Standards Index (PSI) has been introduced in 

Singapore and Daily Air Quality Index DAQI) has 

been deployed in the United Kingdom (UK). Given its 

harmful health consequences, it is important to make 

PM2.5 and PM10 readings throughout the city 

publicly available so any citizens can plan their 

outdoor activities accordingly. 

Due to the high cost of building and operating 

government-run AQMS, only a  limited number of 

AQMSs can be provided throughout a city to provide 

regular air pollution readings. In HK, only 18 AQMSs 

across an area of 1100 sq. km are available [1]. People 

residing in areas without an AQMS can only rely on 

measurements obtained from nearest AQMSs, which 

may not necessarily reflect the actual pollution 

readings of their own locations. To overcome such 

challenge, previous estimation studies designed and 

used feature-based machine learning models [7]–[11], 

such as Support Vector Regression (SVR), to estimate 

PM2.5 values, capitalizing on features manually 

selected from images (such as contrast and saturation). 

However, as these feature-based models are highly 

dependent on how features are constructed, their 

performance can be easily distorted by any change in 

environmental conditions. For example, night-time 

images normally have a lower intensity when 

compared to day-time images. Since image features 

are  manually selected  for  air  pollution estimation, 

conventional machine learning methods can be less 

robust when compared to deep learning-based 

methods, which can extract image features 

automatically In recent years, some studies [12]–[15] 

have used deep learning models to improve image 

estimation accuracy and performance. Although deep 

learning models have been able to extract image 
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features automatically, they have relied only on day-

time images as inputs. Night-time image estimation 

remains a challenge, given that the low image intensity 

during night-time has often resulted in poor estimation 

accuracy. Furthermore, these studies have only 

considered spatial features extracted from single 

images via CNN models, while temporal correlations 

of sequential images are ignored. This is because CNN 

models can only learn features from single images, but 

not how images are changed from one temporal 

instance to the next, and recurrent patterns such as day- 

time vs. night-time images. To improve the quality of 

image-based PM estimation using night-time images, 

an end to-end ResNet-LSTM model is proposed in this 

study. Our proposed model can estimate both PM2.5 

and  PM10  values  directly  from  pictures  taken  by 

smartphones. It achieves lower estimation errors and 

possess a higher pollutant estimation capability, after 

incorporating both day-time and night-time images, 

when compared to other baselines such as CNN-based 

models. Main novelties of this image-based pollutant 

estimation study cover the following: 

• A temporally fine-grained image set is 

constructed with corresponding PM2.5 and PM10 

values labelled. 

• 3024 images have been taken consecutively in a 

time- sequential covering the real day-time 

images. 

• An end-to-end ResNet model using sequential 

images as inputs is constructed and achieves the 

best PM2.5 and PM10 estimation, when 

compared to state- ofthe-art baselines. 

• Apart from taking single images as inputs, 

ResNet- also incorporates sequential images 

taken once every minute for estimating PM2.5 

and PM10 values of a specific location to enhance 

robustness. 

• First deep learning model used to estimate PM2.5 

and PM10 values based on night-time images. 

• A novel Met-ResNet model is developed based on 

the newly developed ResNet model, taking into 

account six  meteorological features, in  addition 

to images taken from smartphones, cctv as inputs, 

which gives even better estimation performance 

when compared with the ResNet model. 

• After  incorporating deep  supervising techniques, 

ResNet and Met-ResNet are constructed to 

improve estimation performance by comparing 

results of each with that of ResNet and Met-

ResNet, 

The rest of this paper is organized as follows. Related 

studies are reviewed in Section II. The Priciple is 

described in III. The dataset and the methodology are 

described in Section IV and V. Section VI presents 

both our experimental results and analyses, and 

Section VII concludes and highlights directions for 

future study. 

II. RELATED WORK 

 

This section reviews deep learning techniques 

and methods used for PM2.5 estimation, based on 

images. 

A.DEEP CONVOLUTION NEURAL NETWORK: 

Krizhevsky et al. [16] first constructed a deep 

convolutional neural network (CNN), AlexNet, to 

classify images into different categories in 2012. Its 

accuracy is higher when compared to manually 

selected feature methods. Simonyan [17] further 

increased the depth of CNN by adding very small 

convolution kernels. This further improves the image 

classification performance based on deep  learning. 

The deep residual network, ResNet [18], also a CNN, 

was developed to tackle the issue of degradation that 

occurred when the number of neural network layers 

was increased in 2016. CNN is good at extracting key 

information from images. The  technique  has  been 

widely implemented in the field of computer vision, 

such as facial recognition [19], image classification 

[16]–[18] and visual tracking [20]. Zheng et al. [21] 

and Hong et al. [22] used CNN models to analyze 

satellite images and estimate ground-level PM2.5 

values. Apart from CNN, Hochreiter and Schmidhuber 

[23] proposed an LSTM model to extract features from 

sequential data for neural machine translation [24], 

[25]. Using these techniques, efforts have been made 

on combining CNN with LSTM for extracting spatial- 

temporal features. Chen et al. [26] used CNN-LSTM 

models to forecast typhoon formation and hourly air 

pollution across the city [27], [28]. These models have 

shown that pollution estimation performance can be 

improved by combining temporal features with spatial 

features. 

 

B. PM ESTIMATION USING MACHINE 

LEARNING: 

PM2.5 can affect the light scattering coefficient [29] 

when a picture is taken, as it obscures the scene and  
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blurs  the  sky,  which  eventually  degrades  the 

visibility [30]. Estimating pollution level based on 

smartphone-taken images is handy, as this allows one 

to easily capture any change in air pollution level. 

Conventional   machine   learning   approach   maps 

ambient light scattering coefficients with PM2.5 

values. The haze-image model [31] was widely 

utilized to estimate scattering coefficients from single 

images. This model learned the formation of observed 

images  (haze-images) from  pure  scenes  that  carry 

light-scattering effects.  To  estimate  PM2.5  values, 

some studies combined the dark channel model [32] 

with the haze-image model to calculate light 

coefficients directly from single images [33], and 

Yang and Chen [34] made good use of the relative 

humidity to improve pollution estimation. As 

compared to [33], [34], Liu et al. [7] and Zhang et al. 

[8] extracted image features such as image entropy, 

contrast, and saturation for further improvement. 

Capitalizing on the haze-image model and extracted 

image features, Liu et al. [7] deployed Support Vector 

Regression (SVR) to estimate PM2.5 concentrations. 

Zhang et al. [8] made good use of multi-kernel 

learning to estimate air quality. Liu et al. [9] adopted 

similar features and used a linear least square 

regression to estimate PM2.5 values via smartphone- 

taken images. Instead of using basic image features,  

Gu et al. [10] constructed a picture-based predictor. 

The entropy information from the image saturation 

map was extracted and non-linear mapping was used 

to estimate PM2.5 values based on the overall 

likelihood of naturalness. Yue et al. [11] combined the 

color information loss with the structural information 

loss and applied a five-parameter logistic function to 

estimate PM2.5 values, which achieved a high 

estimation performance. After all, the performance of 

pollution estimation based on the conventional 

machine learning approaches can be easily distorted 

due to changes in meteorological conditions and 

discrepancies of light intensity between the day and 

the night 

 

C.DEEP LEARNING FOR PM2.5 AND PM10 

ESTIMATION: 

Capitalizing on strengths of the previous deep learning 

techniques, Li et al. [35] combined the dark channel 

and the haze-image models to estimate the scattering 

ability of a medium, also referred to as the 

transmission layer in the haze-image model. 

Following this, the depth of an image was further 

estimated by Deep Convolutional Neural Fields 

(DCNF) [36], and a non-linear mapping was designed 

to estimate PM2.5 values based on experimental 

results. Since CNN can extract important spatial 

features from images, efforts have been made to 

construct CNN models to analyze images directly, 

without selecting image features manually. CNN 

models were used to analyze images and estimated 

PM2.5 [12]–[14] and PM10 levels [12], [14]. To 

further improve classification accuracy, Ma et al. [37] 

and Wang et al. [38] developed two parallel CNN 

models to analyze single images. Ma et al. [37] used 

two parallel CNNs to analyze both the original image 

and the transmission layer, while outputs from these 

two CNNs were used to estimate PM2.5. Images 

collected by Wang et al. [38] covered both skies and 

buildings, using the same weights, similar to the 

method outlined in [13]. Wang et al. [38] split images 

into two parts, the sky and buildings, and constructed 

a Double-Channel CNN to estimate air quality. Instead 

of providing a rough estimation, Liu et al. [15] used 

Long Short-Term Memory (LSTM) [23] to analyze the 

meteorological data, and used a CNN model to process 

images. Results from these two were combined to 

estimate PM2.5 concentrations. However, the models 

did not take sequential images into account. The 

pollutant estimation models above usually took PM2.5 

values from government AQMSs close to the place 

where images were taken, rather than the exact 

measurements of the place where images were taken, 

as ground truths [39]. Further, these models had yet 

considered how environmental variations will affect 

image estimation performance. Image-based 

estimation performance could be seriously degraded 

given that images taken and  PM2.5 measurements 

were not co-located, and that PM2.5 concentrations 

could change when environmental conditions, such as 

the street canyon effect, urban morphology and traffic 

conditions, change overtime. To tackle the current 

research gaps, we used high accuracy calibrated 

portable pollutant sensors to provide accurate PM2.5 

and PM10 measurements of the exact locations where 

pollutant pictures have been taken. Furthermore, we 

incorporated six most relevant features reflecting 

meteorological conditions of locations that these 

pictures were taken into our  deep learning model. 

Furthermore, previous studies extracted image 

features, such  as  entropy, saturation, or  high-level 
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features layers, from the depth and the transmission 

map. However, these features could be easily distorted 

by any change in environmental conditions and light 

intensity, especially features that are extracted from 

low-intensity images, such as night-time images. 

In our study, we combined ResNet and LSTM to 

extract spatial-temporal domain features. In contrast to 

[15], in our proposed model, an LSTM model is added 

to the ResNet to extract the temporal features from 

images. As single night-time images are difficult to be 

analyzed directly, earlier efforts were only based on 

single day-time images as inputs. Instead of simply 

processing single images, our  model considers the 

sequential day-time and night-time images in 

estimating PM2.5 and PM10 values of a specific 

location. 

III. PRINCIPLE 

 

PM in air affects an optical image in different ways, 

but they are all originated from the interactions of light 

with the airborne particles, mainly via light scattering, 

including Rayleigh scattering and Mie scattering. 

Light scattering causes an attenuation of light 

transmission in air,which can be expressed by the 

Beer-Lambert law, 

𝑡 = ��−𝛽𝑑                                                                          (1) 

where β is the medium extinction coefficient, which 

depends on particle size and concentration, and d is the 

distance of light propagation. This equation indicates 

that if the extinction coefficients at different 

wavelengths are determined, then PM concentration 

can be estimated. The extinction coefficient may be 

determined from an observed image according to 

I(x,y)=t(x,y)+J(x,y)+(1-t(x,y))A               (2) 

where I is the observed hazy image, t is the 

transmission from the scene to the camera, J is the 

scene radiance, A is  the  airlight color vector (see 

explanation below). As shown in Fig 1, the first term 

of Eq 2 is the direct transmission of the scene radiance 

into the camera, which is lightreflected by the object  

surfaces in the scene and attenuated by air before 

entering the camera. The second term (1-t(x,y))A is 

called airlight, which is the ambient light scattered by 

air mole- cules and PM into the camera /Wang et al. 

[9] applied the above formula to estimate light 

attenuation. In the present work, the relationship 

between transmission value and PM density was 

evaluated by analyzing ROIs at difference distances. 

Eq 

2 assumes constant atmospheric and lighting 

conditions, which, in practice, may both change with 

the weather and position of the sun that vary with the 

time of the day and season. Additionally, both J and A 

depend not only on the weather and position of the sun, 

but also on PM distribution and con- centration. The 

present work considers these varying factors as 

additional  features  to  improve the accuracy of PM 

estimation based on images. Fig 1. 

 
Fig 1. The radiance reaching the smartphone camera is 

the summation of the transmitted light fromthe object 

and airlight from the sun after scattering by air, water 

and PM in atmosphere. 

 
Fig: 2 PM estimation methodology using ResNet 

The above discussion did not consider color 

information explicitly, which can also serve as 

important features for PM estimation based on light 

scattering consideration. Rayleigh scattering 

dominates when the particles (including air molecules) 

are much smaller than the wavelength of light. It is 

strongly wavelength dependent, and varies with 

wavelength (λ) according to λ-4, which is responsible 

for the blue color of the sky. In contrast, Mie scattering 

occurs when the size of the particles is comparable to 

the wavelengths of light, which tends to produce  a 

white glare around the sun when particles are present 

in air. The combination of Rayleigh and Mie scattering 

affect the brightness and color saturation of an outdoor 

image. Conversely, the color and brightness 

information contains particle concentration and size 

information, and can be used as distinct features to 

estimate PM. The present work includes color 
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information as important image features for PM 

estimation, in addition to light attenuation 

 

IV. METHODOLOGY 

 

Our overarching methodology for estimating PM2.5 

and PM10 values via sequential smartphone taken 

images consists of four stages (see Figure 2). First the 

collected data were pre-processed. Second image 

features were extracted from the images, which were 

used, together with other relevant data, such as the 

position of the sun, date, time, geographic information 

and weather conditions, to predict PM2.5 index. Third, 

our proposed ResNet-LSTM was further refined by 

incorporating meteorological features and one short 

path to exploit incorporating meteorological features 

and one short path to exploit the fullest potential of 

ResNet-LSTM for PM2.5 and PM10 pollutant 

estimation 

A. Data Preprocessing: 

Generally, high air pollution takes place in specific  

periods  of the year, causing  a high-class imbalance  

between the numbers of data instances available for 

different levels of air pollutions. To Predicted evaluate 

the capability and accuracy of PM estimation based on 

image analysis, it is critical to build a database. In the 

present work, we collected images, as well as the date 

and time of each image, PM2.5 index, weather data 

and geographic location from fixed scenes in cities 

from Archive of Many Outdoor Scenes dataset, 

captured every hour from 8:00 a.m. to 16:00 p.m. The 

weather dataof the three cities were obtained from 

Weather Underground (http://www.wunderground. 

com/) and Weather Spark (https://weatherspark.com/).  

Fig:3 RESNet Architecture 

Precise geographical locations,. Consequently,  

training  our  model  using  this type of dataset would 

ultimately lead the model biased  to the  non-polluted  

images.   It  would lead to over-fitting on the validation 

and testing set. Imbalanced  datasets cause very 

impactful bottlenecks and need to be addressed. For 

this reason,  we exploit  random  oversampling  and 

undersampling as well as image augmentation, as 

explained in the following subsections. 

 

B.Random Oversampling and Under sampling: This 

method   used   two  different   strategies   for tackling 

the   class   imbalance   issue.   The   first technique   is 

random oversampling  and under sampling, as  

explained. This technique allows obtaining  a  

balanced  dataset  by  randomly  taking multiple copies 

of minority class images or randomly by skipping a 

portion of the majority class images. Tse techniques 

did not prove useful in our problem and did not resolve 

the imbalance issue.  

 

C.Augmentation: Standard image processing 

augmentation techniques were applied recurring to the 

Keras library. Generating new and realistic images 

with operations such as image flipping and rotation, as 

well  as  zooming by  small  factors,   has  a  big 

potential in improving the performances of the 

network. These techniques were applied after both 

approaches   for  class  balancing  described  in the 

following subsections. 

 

D.Conditional Generative Adversarial Networks 

(CGAN): Conditional Generative Adversarial 

Networks (CGAN) allows us to augment the dataset 

using generative models. Here trained these models to 

learn how to generate new images based on previously 

seen images. Specifically, we trained a CGAN model 

using the minority class’s images in the training set 

and applied it to generate new images for the same 

class, mitigating  imbalance issue. The idea  of  the  

CGAN   is  the  first  class,  and  the remaining are of 

the second class. The CGAN is not used in the testing 

dataset because we want to test our models on the 

camera’s raw images. After the CGAN is applied and 

the dataset has been balanced; simple  augmentation   

methods   such  as  flipping images, rotating, and 

zooming by small factors are applied to the dataset. 

This additionally improves the performances of our 

models and provides us with a broader dataset to 

augment the dataset and provide us with a training 

dataset where 50% of the images are from. 
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V.RESNET ARCHITECTURE 

 

The main benefit of a very deep network is that it can 

represent very complex functions. It can also learn 

features at  many different abstraction levels, from 

edges (at the shallower layers, closer to the input) to 

very complex features (at the deeper layers, closer to 

the output). However, very deep neural networks are 

difficult to train because of the problem of vanishing 

gradient. The vanishing gradient problem occurs when 

the gradient is back-propagated to earlier layers, and 

the repeated multiplication operations make the 

gradient infinitely small. As a  result, as network 

becomes deeper, its performance saturates or even 

degrades rapidly. This problem inspired the residual 

network (ResNet), which allows robust deep 

convolutional neural networks to be built. The main 

idea of the ResNet model is the residual blocks, whose 

architecture is shown in Figure 4. The residual block 

provides two paths for the input: the main path and the 

shortcut (or more commonly known as skip-path). The 

main path provides the normal flow as with any 

convolutional neural network. Still, the shortcut skips 

N convolution layers (in our approach N = 2) and 

provides its input to the following convolution layer. 

The authors in argue that stacking layers should not 

degrade the network performance because one could 

simply stack identity mappings (layers that learn the 

identity mapping which ultimately does not make any 

change) upon the current network, and the resulting 

architecture would perform equally. This indicates that 

the deeper model should not produce a training error 

higher than its shallower counterparts. They 

hypothesize that letting the stacked layers fit a residual 

mapping is easier than letting them directly fit the 

desired underlying mapping. The residual block 

explicitly allows the model to perform this task .The 

basic residual block is also  known as  the  identity 

block. This block corresponds to the case where the 

input activation has the same dimension as the output 

activation. Apart from this  block, there is  another  

block called the convolutional block. The architecture 

of this block is shown in Figure 5. In this block, the 

input and output dimensions do not match. The 

difference between this block and the identity block is 

that there is a convolutional layer in the shortcut path 

to match the dimensions 

 
Fig:4 Basic Residual Block 

The complete architecture of the ResNet model 

(Figure 3) is that the model is built using multiple 

convolutional and  identity blocks.  It  also  contains 

convolution and max pooling layers at the beginning 

of the model, as well as flatten and dense layers at the 

end to make the final prediction. By using this model, 

better results can be obtained which can be explained 

by the fact that   much deeper networks can be used 

that can learn complex features and are not affected by 

the problem of vanishing gradient. 

 

Fig: 5 Convolution Residual block 

Conventional pollution estimation method adopts a 

haze- image model, which is integrated with the dark 

channel  prior techniques.  The  haze-image  model 

developed   by   shows how   the   haze   image   can 

beoverlaid by pure sceneries and scattering  effects. 

This  model has image dehazing and light scattering 

coefficient estimation, as shown in (3) below: 

I(x)=Ot(x)+A(1−t(x) (3) where I(x) represents the 

observed scenery captured by the camera, O represents 

the pure scenery without attenuation, A represents the 

atmospheric light, and t(x) is the scattering ability of 

the medium over the light path length. The 

transmission t(x) can be expressed as e−βx,  where  β  

is  the  scattering  coefficient  of  the atmosphere    and    

next,    the    ambient    scattering coefficient β is 

calculated foreach single pixel, and the average β is 

calculated for the entire image. Finally, based on the 

estimated ambient scattering coefficients, linear 

regression models are used to estimate the PM2.5 and 

PM10 values. 

 

VI. ESTIMATION  OF AQI 
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For    conducting    our    experiments    and evaluation, 

we  used  Tensorflow  version  2.3.0  and Kerasversion 

2.4.3. The complete dataset consists of 178,992 

images, where 80% of the images are taken for training 

the models, 15% of the images are for testing, and 5% 

for validating. We decided to use a smaller percentage 

for validation and testing datasets because  we  have  a  

bigger  dataset,  and  using this approach, we can 

leverage the large amount of data for training 

purposes. The validation dataset was used for hyper-

parameter tuning, where a grid search approach was 

used. The hyper-parameters tuned are: learning rate, 

batch size, and optimizer used. We have obtained the 

optimal parameters through the grid search, i.e., a 

learning rate of 0.001, batch size of 64 images, and 

Adam optimizer. Our proposed models have 

incorporated  pollution  data  and  weather information 

for the last two years .The air pollution data   is   

collected   from   the   API   endpoints   of pulse.eco 

(https://pulse.eco). The API provides information 

about different sensors and different pollutants at 

different timesteps. The timesteps are irregular, so the 

data is aggregated hourly for each sensor. Every row 

consists of weather information, timestamp (date and 

time), the pollutant type, and the amount measured. 

Our models have used only the PM2.5 pollution to 

labeling the images during the training process.  

Therefore, they are not inputs in the machine learning 

models. This method also uses images taken from a 

stationary camera .The camera takes periodical 

pictures of the center of the city,  and at the same time, 

air pollution sensors measure the exact air quality. 

Based on the air quality measurements in terms of 

PM2.5 concentration, the images were labeled with six 

classes depending on the Air Quality Index (AQI) of 

the European Union, as shown in Table 1.The 

implications of the six AQI indexes are the following. 

AQI-1 means that the air quality is satisfactory, and air 

pollution poses little or no risk. AQI-2 means that the 

air quality is acceptable.  However,   there   may  be  a  

risk  for some people, particularly those who are 

unusually sensitive  to   air   pollution.   AQI-3   means   

that members   of   sensitive   groups   may   experience 

health effects. The general public is less likely to be 

affected. With  AQI-4,  some  members  of  the general  

public  may experience health effects, and members of 

sensitive groups may experience more serious health 

effects. AQI-5 requires a health alert because the risk 

of health effects is increased for everyone. AQI-6 

entails issuing a health warning of emergency 

conditions because everyone is more likely to be 

affected. Ideally, a system would be able to  estimate  

air  pollution  precisely.  However,  the fact that the 

proposed models are attempting to do this based on the 

camera images and not actual air pollution sensors  

makes  it unreasonable  to define the  task  as  a  

regression  problem.  Therefore,  our initial approach 

was to use six classes, one for each AQI category. We 

additionally redefined the problem as a binary 

classification problem, collapsing AQI-1 and  AQI-2 

into the “not polluted”  class, and the otherAQI 

indexes into the “polluted” class. In some models, we 

have also incorporated the weather information to 

distinguish between weather conditions and pollution. 

The weather information was  collected  from  the  API 

endpoints of World Weather Online (https:/ 

/www.worldweatheronline.com).  The data consists of 

temperature, wind speed, wind direction, weather 

description, precipitation, humidity, visibility, 

pressure, cloud coverage, heat index, and the UV 

index. This is used a simple strategy that considers the 

last measured value to handle the missing pollution  

measurements,  although  more sophisticated  

approaches  based on generative models can be 

incorporated Even  though  we  have merged  the  six  

classes  into  two  general  classes, the   dataset   is   

still highly  imbalanced,  and  our models could 

become very biased to non-polluted images. For that 

purpose, we applied different techniques for balancing 

the dataset and evaluated their impact on the 

classification performance. 

AQI Category PM2.5Range  6-Class 

Labels  

Binary Labels  

Good 0–50 AQI-1 Not polluted  

Moderate 51–100 AQI-2 Not polluted  

Unhealthy for 

Sensitive Groups  

101–150 AQI-3 Polluted 

Unhealthy   151–200   AQI-4   Polluted  

Very Unhealthy 201–300 AQI-5 Polluted 

Hazardous 301and above AQI-6 Polluted 

Table 1. Air Quality Index (AQI) categories based on 

  

predictions  are  not  useful,  which  was  one  of  the 

main reasons to evaluate the binary classification 

approach that collapsed multiple categories into only 

two .The training and testing accuracy of the different 

architectures, depending on the number of epochs and 

whether  class balancing  was performed  or not  is 

predicted accurately. These results confirm that the 
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models are stable, and after about 40 epochs, the 

performance does not vary. Likewise, it is evident that   

both   that   training   and   testing   accuracy benefited  

significantly  from  the proposed  CGAN data 

augmentation.   Note that the test set remains 

unbalanced  in  all  experiments  because  the balancing 

is performed only on the training set. The reason for 

that is that in a production  setting, the camera images 

would not be going that class over the total number of 

images 

 

VII.LIMITATIONS AND FUTURE WORK 

 

This  study  aims  to  estimate  PM2.5   and  PM10 

concentrations of a specific location in HK using 

sequential images taken consecutively once every 

minute, addressing also the night-time image 

estimation challenge. Our results show that  the 

proposed ResNet and the Met-ResNet model can 

achieve a better PM2.5  and PM10  estimation when 

compared to the baselines, especially after 

incorporating the short path. However, a few 

limitations remain. 

First, although deep-learning models can learn the 

most important features that are proxies to PM2.5 and 

PM10  pollutant concentrations, the estimation 

performance can still be affected by other pollutants, 

ranges of PM2.5 values and mapping to labels in Table  

2  shows  the  distribution  of  the  dataset  in when  

using  six  classes.   The  distribution  of the dataset 

after collapsing the six classes into two for illustrative 

purposes. 

Dataset AQI-1 AQI-2 AQI-3 AQI-4 AQI-5 AQI-6 

Train 80,331 21,623 13,954 11,087 9862 6337 

% 56.1% 15.1% 9.7% 7.7% 6.9% 4.4% 

Test 13,342 4219 3022 987 1564 1135 

% 52.8% 16.7% 12.0% 7.9% 6.2% 4.5% 

This shows the different architectures’ training and 

testing  accuracy,   depending   on  the   number  of 

epochs.  It  is  clearly  visible  that  the  models  are 

stable,  and  after  a  small  number  of  epochs, the 

performance does not vary significantly. However, 

another clear result is that the accuracy is about 56%, 

the same as the majority class ratio. This means that 

the models learned to classify all images as “AQI-1,”  

i.e.,  the  “good”  AQI  category.  As  such,  the as high 

O3  and NO2  values may also degrade the visibility. It  

is  noted that image  visibility can be affected by other 

pollutants, such as O3, NO2, and humidity. In the 

future, we can develop a model based on the same 

methodology to estimate values of other pollutants, 

such as O3 and NO2, based on sequential images taken. 

 

VIII. CONCLUSION: 

 

An  end-to-end  ResNet-LSTM  model  has been 

proposed to estimate PM2.5 and PM10 values from 

smartphone-taken images directly. Reliable estimation 

can  be  obtained  for  both day-time  and  night-time 

images. Our study consists of four stages. First, we 

have calibrated two low-cost portable sensors to 

provide reliable high accuracy pollutant 

measurements. Second, we have conducted an 

experiment to show that PM measurements within a 

distance of up to 500 meters are nearly constant. Third, 

based on our features and the empirical experiment, a 

comprehensive dataset containing 3024 images have 

been constructed. It has covered day-time images of 

the same building (up to 500 meters away), with all 

images taken  by a  camera. Finally,  our  proposed 

ResNet model works well and efficiently predicts 

particulate matters. 
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