# Crystal structure of 5, 7-Dimethyl-4-p-chloro phenoxy methyl coumarin (C<sub>18</sub> H<sub>15</sub> Cl O<sub>3</sub>)

V. N. Narasimha Murthy<sup>1</sup>, Vijayakumar H Doddamani<sup>2</sup>, Ramakrishna Gowda<sup>3</sup>

<sup>1</sup> Department of Physics, Maharani's Science College for Women, Bangalore, India
 <sup>2</sup> Departments of Physics, Jnanabharathi Campus, Bangalore University, Bangalore, India
 <sup>3</sup> Departments of Physics, Government College for Women, Kolar, India

Abstract - Crystal structure of coumarins has been of great interest in recent years especially in investigating the solid-state photochemical dimerization reactions. Coumarin itself crystallizes in the form of orthorhombic crystals and does not undergo photochemical dimerization in the solid state. Different types of packing of the crystal due to substitutions at different positions would affect their solid-state reactivity. Many substituted coumarins were studied for photodimerization due to the inertness of coumarin in solid state and also the role of packing of crystals as their solid-state activity were also studied. X-ray crystal structure analysis of Introduction of Cl at C4 makes the molecule photostable whereas at C6 and C7 it makes the molecule photoreactive though in all cases the crystal system is monoclinic. Methoxy group at C4, C6 and C7 gives rise to different crystal packing systems and different reactivities. Acetoxy group acts as steering agent in solid state reactions, many substituted coumarins were studied for photodimerization due to the inertness of coumarin in solid state and also the role of packing and presence of weak interactions in the following coumarin.

*Index Terms* - coumarins, Dimethyl, crystal x-ray study, Molecular Packing and hydrogen bonding.

#### **I.INTRODUCTION**

4-aryloxy methyl coumarins were mainly of mechanistic interest and they were investigated for a possible Claisen rearrangement by Bheemarao et al[1]. Further structure activity relation studies in this class of compounds revealed the anti-microbial property of various 4-aryloxy methyl coumarins (Kulkarni et al [2].



A diffraction study of one of the above compounds revealed the Centro symmetric nature of these compounds in the solid state.



A study of the packing has shown that in the solid state the two molecules are oriented anti-to each other. With a view of study, the possible changes due to the introduction of the chloro group the crystal structure of the following compound has been investigated.

#### II. EXPERIMENTAL

The Title compound has been synthesised by the reaction of p-chlorophenol with 5,7-dimethyl-4-bromomethylcoumarin. Crystals suitable for diffraction studies have been grown from ethanol by slow evaporation technique. With a view to find out the proffered conformer in the solid state the structure of the title compound schematic view of the molecule shown in the Fig. 1 has been studied during the present investigation.



#### Fig .1

#### **III.CRYSTALLIZATION**

Compound has been grown by slow evaporation technique using acetic acid. Colourless plate like single crystals suitable for X-ray diffraction were obtained. The density of the crystal was measured by flotation technique using potassium iodide solution. The measure density agreed with the calculated density for Z=2.

#### **IV.X-RAY DATA COLLECTION**

The three dimensional intensity data were collected using a single crystal of approximate size 0.30 x 0.20 x 0.20 mm mounted on CCD diffractometer[3]. with graphite monochromated  $MoK_{\alpha}$  radiation of wavelength 0.71073 Å in fine focused sealed tube. The intensities of reflections 6766 were collected in the  $2\theta$ range 1.88 to 24.71. The data was collected using  $\omega$ and  $\phi$  scans mode with h, -9 to 9, k, -10 to 10 and l, -13 to 13. The intensities were corrected for Lorentz and polarization effects has 2498 unique reflections of which 2084  $F_0 > 4\sigma(F_0)$  were observed. The space group *P-1* assigned from systematic absences. The cell parameters are a = 8.387(3) Å, b = 8.612(3) Å, c =11.542(4) Å,  $\alpha = 75.58(5)^0$ ,  $\beta = 71.48(5)^0$ ,  $\gamma =$  $70.35(5)^0$  and V = 734.8(8) Å<sup>3</sup>. The multi-scan absorption was carried out using SADABS[4]. The calculated absorption coefficient was 0.27 mm<sup>-1</sup>.

#### Structure solution and Refinement

The structure was solved by direct methods using SHELXS-97[5]. The position of all non-hydrogen atoms were revealed in the best E-map. Then refined using SHELXL-97 by the full matrix least squares refinement. All non-hydrogen atoms treated isotropically and refined till R-value converged at R(F) = 0.493, w $R(F^2) = 0.1117$ . The difference Fourier map further revealed all H-atoms. All the hydrogen

atoms parameters were included in the final steps of with weight assigned to a structure factor calculations using the scheme w =  $1/[\sigma^2(F_0^2)+(0.1851P)^2+5.624P]$  where P =  $(F_0^2+2F_c^2)/3$ . The parameters at the end of final refinement were R(F) = 0.0414, wR(F<sup>2</sup>) = 0.1049. The minimum and maximum electron densities from difference Fourier map are -0.32 and 0.26e.A<sup>-3</sup> respectively.

#### VI. RESULTS AND DISCUSSIONS

The crystallographic refinement data is given in the Table 1.. The bond lengths and bond angles for nonhydrogen atoms are listed in the Table 2 and Table 3. Table 4. Gives torsion angles involving non-hydrogen atoms[6]. A perspective view of a Ortep plot of the molecule [7] with 50% probability thermal ellipsoids with atomic numbering is shown in Fig. 1. Fig .2 shows the single molecule in a unit cell. Fig.3 shows packing of molecules with C-H...O contacts and the packing of the molecule in the unit cell [8]. Fig. 4 packing diagram showing C-H...O contacts. Packing diagram viewed down, a-axis, b-axis and c-axis are shown in Fig. 5. The least square planes and dihedral angles[9] are listed in Table 5. The distance and angles between the atoms involved in intra and intermolecular hydrogen bonding are listed in Table 6.

#### Conformation of the molecule

The molecule adopts a planar arrangement. The aryloxy moiety is oriented cis with respect to the  $C_{3}$ - $C_{4}$  double bond of coumarin. This is similar to that observed in the case of 7-methyl-4-(p-tolyloxymethyl) coumarin reported by Puttaraja et al [10].

#### Bond angles, Molecular Packing

All the C-C bond lengths are in the normal range of Sp<sup>2</sup> carbons. The C<sub>10</sub>Sp<sup>3</sup>-O bond length is 1.412 Å. The O-C<sub>11</sub>Sp<sup>2</sup> bond length is expectedly less than C<sub>10</sub>-O<sub>1</sub> i.e., 1.368 Å. A comparison of the bond lengths of peri carbons C<sub>10</sub> and C<sub>19</sub> with C<sub>3</sub> and C<sub>4</sub> indicates that the C<sub>4</sub>-C<sub>19</sub> bond length is greater by 0.013 Å (C<sub>3</sub>-C<sub>10</sub> = 1.49 Å). This would reduce the non-bonded interactions with the methyl and methylene hydrogen.

#### VII.ACKNOWLEDGMENT

IJIRT 152242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 729

The authors thank Instrumentation and Service Unit, Indian Institute of Science, Bangalore-560 012 for data collection.



Fig.1 *ORTEP* diagram of the title molecule with 50% probability displacement ellipsoids for non-H atoms.



Fig .2 Single molecules in a unit cell



Fig.3 Packing diagram of the molecule in a crystal showing C-H hydrogen bonding.



Fig. 4 Diagram of the molecule in a crystal showing C-H....O hydrogen bonding.



Fig. 5 (a), (b) and (c)Packing diagram of the molecule in a crystal viewed down a-axis, b-axis and c-axis

| Table | 1. | Crystal | data | and | structure | refinement |
|-------|----|---------|------|-----|-----------|------------|
|-------|----|---------|------|-----|-----------|------------|

| COMPOUND                                         |
|--------------------------------------------------|
| C <sub>18</sub> H <sub>15</sub> ClO <sub>3</sub> |
| 314.75                                           |
| Triclinic, <i>P</i> <sup>−</sup> 1               |
| 293                                              |
| 8.387 (3), 8.612 (3), 11.542 (4)                 |
| 75.578 (5), 71.481 (5), 70.351                   |
| (5)                                              |
| 735.0 (4)                                        |
| 2                                                |
| 328                                              |
| 1.422                                            |
| Mo <i>K</i> α, ( $\lambda = 0.71073$ Å)          |
|                                                  |

IJIRT 152242

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 730

### © July 2021 | IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

| μ (mm <sup>-1</sup> )                                                                                                                          | 0.27                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Crystal size (mm)                                                                                                                              | 0.30×0.20×0.20                                                                                                                             |
| Absorption correction                                                                                                                          | 0.27 mm <sup>-1</sup>                                                                                                                      |
| Calculated density                                                                                                                             | 1.42 mg/m <sup>3</sup>                                                                                                                     |
| No. of measured,                                                                                                                               | 6766, 2498, 2083                                                                                                                           |
| independent and                                                                                                                                |                                                                                                                                            |
| observed $[I > 2\sigma(I)]$                                                                                                                    |                                                                                                                                            |
| reflections                                                                                                                                    |                                                                                                                                            |
| R <sub>int</sub>                                                                                                                               | 0.096                                                                                                                                      |
| θ values (°)                                                                                                                                   | $\theta_{max} = 24.7, \ \theta_{min} = 1.9$                                                                                                |
| $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$                                                                                              | 0.588                                                                                                                                      |
| Range of $h, k, l$                                                                                                                             | $h = -9 \rightarrow 9, k = -10 \rightarrow 10, l = -$                                                                                      |
|                                                                                                                                                | 12 12                                                                                                                                      |
|                                                                                                                                                | 13-13                                                                                                                                      |
| Refinement on                                                                                                                                  | $F^2$                                                                                                                                      |
| Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                                                                              | $F^2$<br>0.041, 0.112, 1.05                                                                                                                |
| Refinement on<br>$R[F^2 > 2\sigma(F^2)], wR(F^2), S$<br>No. of reflections                                                                     | $F^2$<br>0.041, 0.112, 1.05<br>2498                                                                                                        |
| Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parameters                                                          | $F^2$<br>0.041, 0.112, 1.05<br>2498<br>259                                                                                                 |
| Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parametersWeighting scheme                                          | $F^{2}$ 0.041, 0.112, 1.05 2498 259 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0463P)^{2} +$                                                       |
| Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parametersWeighting scheme                                          | $F^{2}$ 0.041, 0.112, 1.05 2498 259 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0463P)^{2} + 0.0989P]$                                              |
| Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parametersWeighting scheme                                          | $F^{2}$ 0.041, 0.112, 1.05 2498 259 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0463P)^{2} + 0.0989P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$       |
| Refinement on<br>$R[F^2 > 2\sigma(F^2)], wR(F^2), S$<br>No. of reflections<br>No. of parameters<br>Weighting scheme<br>$(\Delta/\sigma)_{max}$ | $F^{2}$ 0.041, 0.112, 1.05 2498 259 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0463P)^{2} + 0.0989P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ 2.442 |

Table 2.List of Bond lengths (Å), esd's given in the parentheses

| Atom1-Atom2 | Distance  | Atom1-Atom2 | Distance  |
|-------------|-----------|-------------|-----------|
| C18—C6      | 1.502 (3) | C3—C2       | 1.330 (3) |
| C18—H13     | 0.790 (5) | C3—C10      | 1.497 (2) |
| C18—H14     | 0.800 (4) | C16-C15     | 1.380 (3) |
| C18—H16     | 0.910 (5) | C16—H11     | 0.950 (2) |
| C19—C4      | 1.510 (2) | C14—C15     | 1.354 (3) |
| C19—H4      | 0.930 (3) | C14—C13     | 1.364 (3) |
| С19—Н7      | 1.030 (3) | C12—C13     | 1.377 (3) |
| C19—H8      | 0.980 (3) | C12—H10     | 0.944 (2) |
| Cl1—C14     | 1.742 (2) | С15—Н9      | 0.950 (2) |
| 01—C11      | 1.368 (2) | C6—C7       | 1.360 (3) |
| O1-C10      | 1.412 (2) | C6—C5       | 1.393 (3) |
| O2—C1       | 1.360 (2) | C1—C2       | 1.439 (2) |
| O2—C8       | 1.365 (2) | С7—Н3       | 0.924 (2) |
| O3—C1       | 1.190 (2) | C2—H6       | 0.940 (2) |
| C9—C8       | 1.397 (2) | C4—C5       | 1.367 (3) |
| С9—С4       | 1.411 (3) | C5—H5       | 0.930 (2) |
| С9—С3       | 1.457 (2) | C10—H1      | 1.001 (2) |
| C8—C7       | 1.376 (2) | C10—H2      | 1.030 (2) |
| C11-C16     | 1.368 (3) | C13—H12     | 0.900 (2) |
| C11—C12     | 1.372 (3) |             |           |

| Table 3. List of Bond | angles | (°), | esd's | given | in | the |
|-----------------------|--------|------|-------|-------|----|-----|
| parentheses           |        |      |       |       |    |     |

| Atom-Atom2-<br>Atom3 | Angle      | Atom-Atom2-<br>Atom3 | Angle      |
|----------------------|------------|----------------------|------------|
| C6-C18-H13           | 120.00 (3) | C11—C12—<br>H10      | 117.80 (1) |
| C6—C18—H14           | 105.00 (3) | C13—C12—<br>H10      | 121.70 (1) |

| H13—C18—        | 110.00 (4) | C14—C15—                | 119.85 (2) |
|-----------------|------------|-------------------------|------------|
| H14             |            | C16                     |            |
| C6—C18—H16      | 108.00 (3) | C14—C15—<br>H9          | 120.10(1)  |
| H13—C18—        | 111.00 (4) | С16—С15—                | 120.10(1)  |
| H14_C18_        | 101.00 (3) | C7_C6_C5                | 117.44(2)  |
| H16             | 101.00 (3) | 07-00-05                | 117.44 (2) |
| C4—C19—H4       | 111.50 (2) | C7—C6—<br>C18           | 122.42 (2) |
| С4—С19—Н7       | 111.30(1)  | C5—C6—<br>C18           | 120.14 (2) |
| H4-C19-H7       | 114.00 (2) | O3-C1-O2                | 117.07 (2) |
| C4-C19-H8       | 109.30(1)  | O3—C1—C2                | 126.61 (2) |
| H4-C19-H8       | 104.00 (2) | O2-C1-C2                | 116.27 (2) |
| H7—C19—H8       | 107.00 (2) | C6-C7-C8                | 120.01 (2) |
| C11-01-C10      | 116.10(1)  | С6—С7—Н3                | 122.40(1)  |
| C1—O2—C8        | 122.51 (1) | С8—С7—Н3                | 117.50(1)  |
| C8—C9—C4        | 116.17 (2) | C3-C2-C1                | 122.89 (2) |
| C8-C9-C3        | 115.78 (2) | С3—С2—Н6                | 123.40(1)  |
| C4—C9—C3        | 128.05 (1) | С1—С2—Н6                | 113.70(1)  |
| 02-C8-C7        | 114.19(1)  | $C_{5} - C_{4} - C_{9}$ | 119.05 (2) |
| 02              | 12230(2)   | C5-C4-                  | 116 35 (2) |
| 02 00 07        | 122.30 (2) | C19                     | 110.55 (2) |
| С7—С8—С9        | 123.51 (2) | C9—C4—<br>C19           | 124.57 (2) |
| 01-C11-C16      | 124.53 (2) | C4—C5—C6                | 123.80 (2) |
| O1-C11-C12      | 115.61 (2) | C4—C5—H5                | 120.40(1)  |
| C16—C11—<br>C12 | 119.86 (2) | C6—C5—H5                | 115.80(1)  |
| C2—C3—C9        | 120.15 (2) | 01—C10—<br>C3           | 109.78 (1) |
| C2—C3—C10       | 119.14 (2) | O1—C10—<br>H1           | 108.60 (1) |
| C9—C3—C10       | 120.71 (2) | C3—C10—<br>H1           | 109.20(1)  |
| C11—C16—<br>C15 | 119.63 (2) | O1—C10—<br>H2           | 108.80(1)  |
| C11-C16-        | 123,40 (1) | C3-C10-                 | 109,50(1)  |
| H11             |            | H2                      |            |
| C15-C16-        | 117.00(1)  | H1-C10-                 | 110.90(2)  |
| H11             |            | H2                      |            |
| C15-C14-        | 121.39 (2) | C14—C13—                | 118.79 (2) |
| C13             |            | C12                     |            |
| C15—C14—Cl1     | 118.72 (2) | C14—C13—<br>H12         | 124.70(1)  |
| C13—C14—Cl1     | 119.89 (2) | C12—C13—<br>H12         | 116.50(1)  |
| C11—C12—<br>C13 | 120.47 (2) |                         |            |

Table 4. List of Torsion angles (°), esd's given in the parentheses

| Atom1-Atom2- | Angle | Atom1-Atom2- | Angle |
|--------------|-------|--------------|-------|
| Atom3-Atom4  |       | Atom3-Atom4  |       |

IJIRT 152242

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 731

## © July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

| C1—O2—C8— | -177.38 (2) | C18—C6—   | -179.00  |
|-----------|-------------|-----------|----------|
| C7        |             | C7—C8     | (2)      |
| C1—O2—C8— | 2.90 (3)    | O2—C8—C7— | 178.48   |
| C9        |             | C6        | (2)      |
| C4—C9—C8— | -179.45 (2) | C9—C8—C7— | -1.80(3) |
| 02        |             | C6        |          |
| C3—C9—C8— | -0.30 (2)   | C9—C3—C2— | 2.60(3)  |
| 02        |             | C1        |          |
| C4—C9—C8— | 0.80(3)     | C10-C3-   | -176.85  |
| C7        |             | C2-C1     | (2)      |
| C3—C9—C8— | 179.93 (2)  | O3—C1—C2— | 177.30   |
| C7        |             | C3        | (2)      |
| C10-01-   | 0.40(3)     | 02—C1—C2— | -0.10(3) |
| C11-C16   |             | C3        |          |
| C10-01-   | 179.92 (2)  | C8—C9—C4— | 0.70(3)  |
| C11-C12   |             | C5        | ~ /      |
| C8—C9—C3— | -2.30 (3)   | C3—C9—C4— | -178.24  |
| C2        |             | C5        | (2)      |
| C4—C9—C3— | 176.69 (2)  | C8—C9—C4— | -177.20  |
| C2        |             | C19       | (2)      |
| C8—C9—C3— | 177.12 (2)  | C3—C9—C4— | 3.80(3)  |
| C10       |             | C19       |          |
| C4—C9—C3— | -3.90 (3)   | C9—C4—C5— | -1.40(3) |
| C10       |             | C6        |          |
| 01-C11-   | 178.59 (2)  | C19—C4—   | 176.70   |
| C16-C15   |             | C5—C6     | (2)      |
| C12-C11-  | -1.00 (3)   | C7—C6—C5— | 0.50(3)  |
| C16-C15   |             | C4        |          |
| 01-C11-   | -178.24 (2) | C18—C6—   | -179.50  |
| C12—C13   |             | C5—C4     | (2)      |
| C16-C11-  | 1.30 (3)    | C1101     | -178.23  |
| C12—C13   |             | C10—C3    | (1)      |
| C13—C14—  | 1.00 (3)    | C2—C3—    | 3.20 (2) |
| C15-C16   |             | C10-01    |          |
| Cl1—C14—  | -178.75 (2) | С9—С3—    | -176.18  |
| C15-C16   |             | C10—O1    | (2)      |
| C11—C16—  | -0.20 (3)   | C15—C14—  | -0.60(3) |
| C15—C14   |             | C13—C12   |          |
| C8-02-C1- | 179.70 (2)  | Cl1—C14—  | 179.14   |
| O3        |             | C13-C12   | (2)      |
| C8-02-C1- | -2.60 (3)   | C11-C12-  | -0.60(3) |
| C2        |             | C13—C14   |          |
| С5—С6—С7— | 1.10(3)     |           |          |
| C8        |             |           |          |

| Table.5  | List | of | Bond | angles | (°), | esd's | given | in | the |
|----------|------|----|------|--------|------|-------|-------|----|-----|
| parenthe | eses |    |      |        |      |       |       |    |     |

| Atom-Atom2- | Angle  | Atom-Atom2- | Angle  |
|-------------|--------|-------------|--------|
| Atom3       |        | Atom3       |        |
| C6-C18-H13  | 120.00 | C11-C12-H10 | 117.80 |
|             | (3)    |             | (1)    |
| C6-C18-H14  | 105.00 | C13-C12-H10 | 121.70 |
|             | (3)    |             | (1)    |
| H13-C18-H14 | 110.00 | C14-C15-C16 | 119.85 |
|             | (4)    |             | (2)    |
| C6-C18-H16  | 108.00 | С14—С15—Н9  | 120.10 |
|             | (3)    |             | (1)    |

| H13—C18—H16      | 111.00<br>(4) | С16—С15—Н9      | 120.10 |
|------------------|---------------|-----------------|--------|
| H14_C18_H16      | 101.00        | C7_C6_C5        | 117.44 |
|                  | (3)           | <i>er eo es</i> | (2)    |
| C4—C19—H4        | 111.50        | C7-C6-C18       | 122.42 |
|                  | (2)           | 0, 00 010       | (2)    |
| C4-C19-H7        | 111.30        | C5-C6-C18       | 120.14 |
|                  | (1)           |                 | (2)    |
| H4—C19—H7        | 114.00        | O3—C1—O2        | 117.07 |
|                  | (2)           |                 | (2)    |
| C4-C19-H8        | 109.30        | O3—C1—C2        | 126.61 |
|                  | (1)           |                 | (2)    |
| H4-C19-H8        | 104.00        | O2—C1—C2        | 116.27 |
|                  | (2)           |                 | (2)    |
| H7—C19—H8        | 107.00        | C6-C7-C8        | 120.01 |
|                  | (2)           |                 | (2)    |
| C11-01-C10       | 116.10        | С6—С7—Н3        | 122.40 |
|                  | (1)           |                 | (1)    |
| C1—O2—C8         | 122.51        | С8—С7—Н3        | 117.50 |
|                  | (1)           |                 | (1)    |
| C8—C9—C4         | 116.17        | C3—C2—C1        | 122.89 |
|                  | (2)           |                 | (2)    |
| C8—C9—C3         | 115.78        | С3—С2—Н6        | 123.40 |
|                  | (2)           |                 | (1)    |
| C4—C9—C3         | 128.05        | C1—C2—H6        | 113.70 |
|                  | (1)           |                 | (1)    |
| O2—C8—C7         | 114.19        | C5—C4—C9        | 119.05 |
| 00.00.00         | (1)           | G5 G4 G10       | (2)    |
| 02—C8—C9         | 122.30<br>(2) | C5—C4—C19       | (2)    |
| С7—С8—С9         | 123.51        | C9-C4-C19       | 124.57 |
|                  | (2)           |                 | (2)    |
| 01—C11—C16       | 124.53        | C4—C5—C6        | 123.80 |
|                  | (2)           |                 | (2)    |
| 01—C11—C12       | 115.61        | C4-C5-H5        | 120.40 |
|                  | (2)           |                 | (1)    |
| C16-C11-C12      | 119.86        | C6—C5—H5        | 115.80 |
| ~ ~ ~            | (2)           |                 | (1)    |
| C2—C3—C9         | 120.15        | 01—C10—C3       | 109.78 |
| 62 62 610        | (2)           | 01 010 111      | (1)    |
| C2—C3—C10        | (2)           | OI-CI0-HI       | 108.60 |
| <u>C0</u> C2 C10 | (2)           | C2 C10 U1       | (1)    |
| C9—C3—C10        | (2)           | С5—С10—Н1       | (1)    |
| C11-C16-C15      | 119.63        | O1-C10-H2       | 108.80 |
|                  | (2)           |                 | (1)    |
| C11-C16-H11      | 123.40        | C3-C10-H2       | 109.50 |
|                  | (1)           |                 | (1)    |
| C15-C16-H11      | 117.00        | H1-C10-H2       | 110.90 |
|                  | (1)           |                 | (2)    |
| C15—C14—C13      | 121.39        | C14—C13—C12     | 118.79 |
|                  | (2)           |                 | (2)    |
| C15—C14—Cl1      | 118.72        | C14—C13—H12     | 124.70 |
|                  | (2)           | <b></b>         | (1)    |
| C13—C14—Cl1      | 119.89        | C12—C13—H12     | 116.50 |
| 1                | (2)           | 1               | (1)    |

IJIRT 152242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 732

| C11—C12—C13 | 120.47 |  |
|-------------|--------|--|
|             | (2)    |  |

| Table 6 List of | Torsion | angles | (°), | esd's | given | in the |
|-----------------|---------|--------|------|-------|-------|--------|
| parentheses     |         |        |      |       |       |        |

| Angle                                                                                                  | Atom1-Atom2-                                                                                                                                                                                                                                                                        | Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                                                      | Atom3-Atom4                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -177.38                                                                                                | C18—C6—C7—                                                                                                                                                                                                                                                                          | -179.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)                                                                                                    | C8                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.90 (3)                                                                                               | O2—C8—C7—                                                                                                                                                                                                                                                                           | 178.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                        | C6                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -179.45                                                                                                | C9—C8—C7—                                                                                                                                                                                                                                                                           | -1.80(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)                                                                                                    | C6                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -0.30(2)                                                                                               | C9—C3—C2—                                                                                                                                                                                                                                                                           | 2.60 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | C1                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.80 (3)                                                                                               | C10—C3—C2—                                                                                                                                                                                                                                                                          | -176.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                        | C1                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 179.93                                                                                                 | O3-C1-C2-                                                                                                                                                                                                                                                                           | 177.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2)                                                                                                    | C3                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.40(3)                                                                                                | 02-C1-C2-                                                                                                                                                                                                                                                                           | -0.10(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | C3                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 179.92                                                                                                 | C8-C9-C4-                                                                                                                                                                                                                                                                           | 0.70 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)                                                                                                    | C5                                                                                                                                                                                                                                                                                  | •• (•)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -2.30(3)                                                                                               | C3-C9-C4-                                                                                                                                                                                                                                                                           | -178.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                        | C5                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 176.69                                                                                                 | C8-C9-C4-                                                                                                                                                                                                                                                                           | -177.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)                                                                                                    | C19                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 177.12                                                                                                 | C3-C9-C4-                                                                                                                                                                                                                                                                           | 3.80 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2)                                                                                                    | C19                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -3.90(3)                                                                                               | C9—C4—C5—                                                                                                                                                                                                                                                                           | -1.40(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | C6                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 178.59                                                                                                 | C19—C4—C5—                                                                                                                                                                                                                                                                          | 176.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (2)                                                                                                    | C6                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -1.00(3)                                                                                               | C7—C6—C5—                                                                                                                                                                                                                                                                           | 0.50(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                        | C4                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -178.24                                                                                                | C18—C6—C5—                                                                                                                                                                                                                                                                          | -179.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)                                                                                                    | C4                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.30 (3)                                                                                               | C11—01—                                                                                                                                                                                                                                                                             | -178.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                        | C10—C3                                                                                                                                                                                                                                                                              | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.00 (3)                                                                                               | C2-C3-C10-                                                                                                                                                                                                                                                                          | 3.20 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        | O1                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -178.75                                                                                                | C9-C3-C10-                                                                                                                                                                                                                                                                          | -176.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (2)                                                                                                    | 01                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -0.20(3)                                                                                               | C15-C14-                                                                                                                                                                                                                                                                            | -0.60(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                        | C13-C12                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 179.70                                                                                                 | C13—C12<br>Cl1—C14—                                                                                                                                                                                                                                                                 | 179.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 179.70<br>(2)                                                                                          | C13—C12<br>Cl1—C14—<br>C13—C12                                                                                                                                                                                                                                                      | 179.14<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 179.70<br>(2)                                                                                          | C13—C12<br>Cl1—C14—<br>C13—C12                                                                                                                                                                                                                                                      | 179.14<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 179.70<br>(2)<br>-2.60(3)                                                                              | C13—C12<br>Cl1—C14—<br>C13—C12<br>C11—C12—<br>C13—C14                                                                                                                                                                                                                               | 179.14<br>(2)<br>-0.60(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $   \begin{array}{r}     179.70 \\     (2) \\     -2.60 (3) \\     \hline     1 10 (3)   \end{array} $ | C13—C12<br>Cl1—C14—<br>C13—C12<br>C11—C12—<br>C13—C14                                                                                                                                                                                                                               | 179.14<br>(2)<br>-0.60(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                        | Angle<br>-177.38<br>(2)<br>2.90 (3)<br>-179.45<br>(2)<br>-0.30 (2)<br>0.80 (3)<br>179.93<br>(2)<br>0.40 (3)<br>179.92<br>(2)<br>-2.30 (3)<br>176.69<br>(2)<br>177.12<br>(2)<br>-3.90 (3)<br>178.59<br>(2)<br>-1.00 (3)<br>-178.24<br>(2)<br>1.30 (3)<br>-178.75<br>(2)<br>-0.20 (3) | Angle         Atom1-Atom2-<br>Atom3-Atom4           -177.38         C18—C6—C7—<br>C6           (2)         C8           2.90 (3)         O2—C8—C7—<br>C6           -179.45         C9—C8—C7—<br>C6           -0.30 (2)         C9—C3—C2—<br>C1           0.80 (3)         C10—C3—C2—<br>C1           179.93         O3—C1—C2—<br>C3           0.40 (3)         O2—C1—C2—<br>C3           179.92         C8—C9—C4—<br>C5           176.69         C8—C9—C4—<br>C5           176.69         C8—C9—C4—<br>C5           176.69         C8—C9—C4—<br>C5           177.12         C3—C9—C4—<br>C5           177.12         C3—C9—C4—<br>C5—<br>C6           178.59         C19—C4—C5—<br>C6           178.59         C19—C4—C5—<br>C4           -1.00 (3)         C7—C6—C5—<br>C4           -178.24         C18—C6—C5—<br>C4           -178.24         C18—C6—C5—<br>C4           1.30 (3)         C11—O1—<br>C10—C3           1.00 (3)         C2—C3—C10—<br>O1           -178.75         C9—C3—C10—<br>O1           -0.20 (3)         C15—C14— |

- [1] Thyagarajan B S, Balasubramanian K K and Bhima Rao R 1967 Tetrahedron 23 1893
  - [2] Kulkarni, M.V., Patil, V. D., and Pujar, B. G, Arch. Pharm, (Weinheim). 316, 16. 1993.
  - [3] Enraf-Nonius, CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.1989.
  - [4] Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.2004.
  - [5] Sheldrick, G. M., Acta. Cryst., A64, p112-122.2008.
  - [6] Klyne and Prelog, Experientia, 16, p521.1960.
  - [7] Farrugia, L. J, J. Appl. Cryst., 30, p565. 1997.
  - [8] Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., and van de Streek, J, J. Appl. Cryst., 39, p453-457.2006.
  - [9] Nardelli, Musatti, Domiano and Andreetti, Ric. Sci., 15(II-A), p807. 1965.
  - [10] K.T. Vasudevan and Puttaraja, Acta. Cryst., C46, 2129-2131. 1990.

#### REFERENCES

```
IJIRT 152242
```