
© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 196

Triangulating Performance Bottlenecks in Business

Critical Application’s

Abstract - The health of modern organizations depends

on many complex business and operational processes

that are impossible to monitor and manage manually. A

disruption to these systems can cost millions of dollars to

enterprises and jeopardize customer satisfaction and

loyalty. Until recently, few analytical tools could scan

through humungus data, detect subtle changes, and

proactively notify users about issues that might adversely

affect business outcomes. They continuously detect

anomalies, trends, and correlations and present

individuals with a handful of most relevant insights.

However, only monitoring tools are not adequate to

analyse and detect the root causes in terms of a

performance issue. This paper proposes an approach

that is based on 3 core pillars that are basis analysis of

business systems, static analysis, and dynamic analysis.

Modern applications carry a heavy burden: they are

required to deliver high performance and are featured

rich. They must provide personalization to users,

assemble information from disparate and data sources,

and process data intelligently depending on user

requests. These applications are fragmented into

multiple operations executed for the same request, the

results of which are assembled into a structured response

to the user. For example, the request to view an account

balance may require checking for a valid session,

querying a backend database, and finally putting

together an HTML response leveraging the results from

the database query. As some of these operations are time-

consuming, such dynamic applications have high

inherent costs in performance and scalability. This paper

will also discuss the different technique for building high

performance business applications.

Index Terms - Performance Bottlenecks, Static Analysis,

Dynamic Analysis, Hotspots, Blind Spots,

Vulnerabilities, Architecture Trade Analysis,

Application Performance Management

INTRODUCTION

In every application, performance matters the most.

Research has proved that if an application takes more

than 2 seconds to respond to end-user requests end-

used tend to leave or quite the application. When end-

Users complain about performance and unresponsive

features, many of these factors lead to losing those

users as customers. To satisfy users’ needs,

performance must be continuously checked, profiled,

and monitored. Performance profiling & optimization

occurs by monitoring and analyzing the performance

of the application and identifying ways to improve it.

An application are a mixture of server-side and client-

side components. The application can have

performance problems on either side, and both need to

be profiled and instrumented. The client side relates to

performance as seen within the web browser. This

includes initial page load time, downloading

resources, JavaScript that runs in the browser etc. The

server side relates to how long it takes to run on the

server to execute requests. One of the ways optimizing

the performance on the server generally revolves

profiling & optimizing things like database queries

and other application dependencies.

The application delivery chain will continue to grow

as businesses continue to leverage newer technologies

such as virtualization, cloud services, or mobile

enterprise apps to help drive better efficiency or

competitive differentiation. Applications have

changed and have become “composite,” meaning that

multiple elements are assembled for the first time

within the end user’s browser. For instance, some

services or elements come from within your data

center, some through CDNs and others from third

parties delivering ratings and reviews, ads, news feeds,

e-commerce, and more. In fact, the average

application consists of 10 separate services — each of

which impacts end user experience, availability and

response time. And while IT monitors pieces of the

application delivery chain, they lack the complete

picture of how performance is delivered to their users.

Sameer S Paradkar, Enterprise Architect

ATOS, Architecture Group, Business & Platforms Solutions Global Delivery Centre-India

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 197

Performance Bottlenecks in Business-Critical

Applications – Problem Context

The traditional approach is considered bottom-up and

does not provide full visibility into the entire business

transaction between the end user and back-end

services. Individual IT support teams using disparate

APM toolsets do not work collaboratively, creating

inefficiency and longer mean time to repair (MTTR)

to support business needs and IT objectives.

Enterprise application landscapes consists of services

and functionality that is delivered to the end users from

multiple sources. These sources include components

delivered from the data center as well as components

delivered from third parties and the cloud, such as

content delivery networks (CDNs), news feeds, ads,

analytics, bill payment, and e-commerce platforms.

With so many moving parts in the data center, plus

virtualization, the cloud layers of application tiers, and

the staggering amount of data handled by a

heterogeneous infrastructure, the functional

complexity is enormous.

The application value chain is more complex because

of:

• Increased complexity in the data center due to

multitier architectures, virtualization, web

services and APIs, mobile and WAN

optimization.

• Increased complexity on the web is due to third-

party providers, CDNs, multiple browsers

(Chrome, Safari, Explorer, etc.), and mobile

devices (smartphones, iPads, etc.); the use of

cloud providers.

• Saturated peering points must serve a mix of

third-party providers, CDNs, cloud providers,

multiple browsers, and mobile devices — leading

to uneven performance. Moreover, if the last mile

— the connection between an end user and an ISP

— is slow for any reason, the end user experience

suffers, and so might the business.

When performance problems do occur for the end

user, the inability to monitor across the entire

application delivery chain hinders the organization’s

ability to rapidly determine the route cause of the

problem. And much time is spent trying to determine

where the performance problem resides

Application delivery chains will continue to grow in

complexity. Prior to the cloud onslaught, IT managers

had a much easier time troubleshooting and optimizing

application performance because all underlying

elements were within a single data center. In the new

world of cloud service providers (CSPs) and

composite applications, troubleshooting application

issues requires IT to chase down multiple complex

request paths for an ever-growing number of

applications.

Lack of end-user performance insight and the inability

to rapidly isolate fault domains across the application

delivery chain leads to delays and high costs to resolve

application performance problems. Developers’ time

is spent majorly on debugging applications and trying

to reproduce problems. A large number of production

problems could be avoided by implementing a more

proactive approach to application performance

management.

More importantly, IT does not always have insight into

the end-user impact of the IT infrastructure’s

performance. This issue is complicated by the fact that

a growing number of organizations are outsourcing

critical elements of their application delivery chain to

CSPs, such as CDNs, outsourced data centers, and e-

commerce platforms. In such cases, there is often less

insight into performance issues from the beginning to

end.

Challenges faced by Different Stakeholders

End Users Operations Team

- Application is slow

during certain periods

of the day or week

- Serious Application

Errors that corrupt data

- Improper responses

from L1 Support the

reason for the problem

- Previous problems

recurring and

hampering users’ ability

to use the application

- Low end user morale

and loss of productivity

- Lack of appropriate tools

to troubleshoot downtime

issues

- Non-integrated tools make

troubleshooting time

consuming false alerts

- Inability to understand the

real impact of downtime

on the application

- Shifting of responsibility

among various technology

teams - like network team,

server team, application

server administration

team, database team, etc.

- Lack of Actionable Data

even with so many

monitoring tools

- High time to identify the

root cause of a problem

because of the large

number of resources

monitored

- Lack of skilled resources

who understand various

technologies

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 198

Trangulating HotSpots, BlindSpots, and

Vulnerabilities

The approach is to identify the impediments in the

application’s performance to find the root cause of the

issues. By identifying the impediments, one can plan

and select the best possible solution and an alternative

to resolving the performance issues. The approach

outlined in this paper is based on 3 core pillars which

are asis state analysis, static analysis and dynamic

analysis. As the system code base is typically very

very large, one must rely on automated tools and

utilities for analysis to triangulate the performance

bottlenecks and hotspots. Please find the diagram that

depicts the approach that the paper proposes to

leverage to triangulate hotspots, blind spots, and

vulnerabilities.

Figure: Key Pillars of Performance Assessment

Analysis the As-Is State

The principal benefit of the Architecture Analysis is

the ability to see if the proposed overall software

structure will live up to the user expectations. The

architecture analysis helps one understand the

strengths and weaknesses of a system. The method not

only helps evaluate the current system architecture,

but also helps with the design of the architecture for a

new system. This methodology helps designers to ask

the right questions and solve critical issues early in the

project. Additionally, selecting the right degree of

quality for a specific system fully utilizes the money

spent by the customer, as the money spent in any one

area of the system will be justified. The analysis

consists of the following aspects

Steps Description

Architecture

Analysis – Design

Patterns and

Analysis of the architecture type

and deviations of any to

determine any negative

performance impact

aligning with best

practices

Refactoring or

removing an Anti-

Patterns

Identification of Performance

Anti-Patterns as their use

produces negative consquenses

Alternative

Component

Integrations or

Interactions

may be possible to change the

interaction to

improve responsiveness or

throughput

Strategic

Improvements

Other opportunities to

significantly improve

performance by applying

Performance Principles and best

practices

Tactical

Improvements

Other Performance Patterns

could also be applied to

immediately improve system

throughput

The methods described in this section are explained in

the form of techniques in the next section.

Techniques for building highly performant business

systems

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 199

Tier / Domain Techniques

Architecture &

Design

The efficiency and effectiveness of a performance strategy are closely tied to a caching strategy. From a

performance standpoint, having an efficient and elaborate caching mechanism is the first step in the

process. Take the inventory of all key application components and come up with a strategy to cache the

data that will speed up the overall process.

Architecture &

Design

Evaluate all possibilities of failure and their likely probability. A few common failure events could be

hardware failure, security breaches, natural disasters, a sudden spike in traffic, network failure, and so on.

For each of these events, attach a weight and the probability of its occurrence. Then devise a fault-

tolerance mechanism for each of these events. The fault handling procedure and failover options minimize

the latency issues caused by failed components.

Architecture &

Design

Design solutions so that they can be distributed across multiple nodes. This offers a dual advantage of

both performance and scalability.

Architecture &

Design

The key components should be kept lightweight by minimizing their overall size and minimizing server

round trips. The most popular way of implementing a lightweight design is to use asynchronous JavaScript

and XML - AJAX-based components with no or minimum JavaScripting. This reduces the impact on page

size as well as the number of page refreshes and server round-trips.

Architecture &

Design

Leveraging open standards not only allows for future painless extension of the technology stack, but it

also helps in understanding the technology and troubleshooting in the case of performance issues.

Software components should be loosely coupled so that the failure of a performance issue on one

component does not impact the overall response time.

Architecture &

Design

The various tiers should be hosted on different hardware machines. Resource intensive operations and the

database are deployed on dedicated hardware, providing improved performance.

Architecture &

Design

Leverage resource pooling in the application container to improve the performance. Use of connection

pooling for database connections will improve performance.

Architecture &

Design

Load balancing is a key technique to spread the load evenly between various nodes. Load balancing or

distribution through the Round Robin DNS algorithm will facilitate in superior performance.

Architecture &

Design

Separate long-running critical processes that might fail by using a separate physical cluster. For example,

a web server provides superior processing capacity and memory, but may not have robust storage that can

be swapped rapidly in the event of a hardware failure.

Architecture &

Design

The key scalability patterns include distributed computing, parallel computing, SOA, event-driven

architecture, push-and-pull data modeling, optimal load sharing, enterprise portals, and message

modeling.

Architecture &

Design

Establish smart caching to cache the frequently used data/query results in the application tier to avoid

costly APIs.

Integration & API Lower traffic on the wire by sending only what is required and retrieving only what is necessary.

Integration & API
Reduce the number of transitions between boundaries, and reduce the amount of data transferred over the

wire. Choose batch mode to minimize calls over the network channel.

Integration & API

Where communication tier boundaries are crossed, we leverage coarse-grained interfaces require a

reduced number of calls for a specific process, and consider using an asynchronous model of

communication.

Integration & API

Design effective locking, transaction queuing, and threading mechanisms. Leverage optimum queries for

superior performance, and avoid bulk data fetching when only a subset is required for the operation.

Leverage asynchronous APIs, message queuing, or one-way calls to minimize blocking while making

calls across tier boundaries.

Integration & API
Architect an efficient communication methodology and protocols between tiers to ensure entities securely

interact with no performance degradation.

Largely granular interfaces require multiple invocation to perform a task and are the best solution

alternatives when located on the same physical node.

Integration & API
Interfaces that make only one call to accomplish each task provide outstanding performance when the

components are distributed across physical boundaries.

Integration & API

Adopt REST-based integration rather than heavyweight alternatives, such as Simple Object Access

Protocol (SOAP) or Application Programming Interface (API) calls. Using lightweight alternatives, such

as REST-based services, are fast, they transfer less data, and are more scalable.

Integration & API Leverage lightweight alternatives, such as JSON over XML for service invocation, and do the service

invocations only when needed.

Integration & API Avoid chatty APIs and batch requests to minimize server round-trips. The fewer the calls, the less the load

on the server and hence it will be more scalable.

UI Tier

Minimize the number of static assets, such as images, JavaScript, Cascading Style Sheets (CSS), required

by the application. This can be achieved by compressing and merging them to form a minimal set.

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 200

UI Tier

Leverage the AJAX-based approach, whether it may be for client-side components communicating with

the server, or for data aggregation. Non-blocking loads using asynchronous data requests drastically

improve the perceived page load time and provide a nonblocking loading of the page.

UI Tier The inbuilt caching of web servers should be leveraged for better performance and scalability.

Business Tier
Designing logical layers on the same physical tier to reduce the number of physical nodes while also

increasing load sharing and failover capabilities.

Business Tier
Leverage design that uses alternative systems when it detects a spike in traffic or increase in user load for

an existing system.

Business Tier
Stateless transactions and requests makes the application more scalable. Designing applications using

stateless session beans improve the scalability.

Business Tier

Business logic needs to be loosely coupled with the web tier, hence deploying the application components

on the separate node is easier. SOA provides scalability at the integration layer by loose coupling.

Database Tier

While retrieving data from systems, such as a database or web services, it is recommended to batch

requests to reduce server round-trips. Most of the database APIs and object-relational mapping (ORM)

frameworks provide batching functionality.

Database Tier

Use connection pooling for database and resource pooling improves the scalability of applications.

Resource pooling, such as database connection pools, is for maintaining multiple logical connections over

fewer physical connections and then reusing the connections, bringing in more scalable efficiency.

Database Tier
Partition data across multiple database servers to improve scalability and allow flexible location for data

sets.

STATIC ANALYSIS – CODE ANALYSIS

Static code analyser’s assesses quality, in terms,

degree of compliance with the coding practices of

software engineering that promote security,

extensibility, reliability, and maintainability. Static

analysers find weaknesses in the program code that

might lead to vulnerabilities. Static code analysers

analyse the source code for specific defects as well as

for compliance with various coding standards and

coding guidelines. The tool identifies security

vulnerabilities and hotspots during development and

catch these critical issues. Fixing these flaws during

implementation phase can reduce the number of builds

necessary to produce an optimum and secured product

and educate the development teams about coding

practices and guidelines. Static code analysers review

the source code to detect common bad practices, catch

bugs, and make sure the development adheres to

standards and guidelines. Most static code analysis

tools define a series of rulesets (100+ rules) that

identify different categories of issues in the code, for

example: programming errors, coding standards,

violations, and security vulnerabilities.

The challenges of modern software systems converge

ultimately to their architecture. As systems become

more complex and huger, their architectures assume

ever greater importance in managing their growing

coherence, reliability, and integrity. When

architectural integrity is compromised, the probability

for a serious operational bottleneck increases

dramatically. Interactions among layers and

subsystems will become increasingly more complex to

articulate. Software Composition Analysers look

inside to identify architecture quality issues. The

analyser’s read, analyse and semantically understand

all major kinds of source code across all layers of an

application (GUI, logic and data). By analysing all

tiers of complex software, critical application health

metrics like robustness, maintainability,

transferability, flexibility, performance, or security

can be measured and compliance to the best prac¬tices

can be assessed. The analyser’s look at the application

from a static viewpoint but are able to simulate how

the application will run, connecting all pieces of the

puzzle, looking across different languages and

databases. Hence, analysers are able to perform

analysis of the entire application or system as to its

health.

DYNAMIC ANALYSIS – RUN-TIME ANALYSIS

Dynamic Analysis are a set of processes and tools to

ensure that application remains highly available and

responds to user requests within an acceptable time

limit. Monitoring tools help to achieve these goals by

monitoring metrics such as response time, memory,

network bandwidth, IOPS, and CPU time. The next

generation tools that are based on cutting edge

technologies like machine learning and AI provide

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 201

ways to diagnose, triage, and resolve issues and

bottlenecks in applications and infrastructure. The

aspects that are critical interms of application

monitoring or APM are monitoring metrics, tracing

and logging.

• Application Monitoring: In terms of monitoring,

the metric is a quantified measure that can be

leveraged to understand the status of a service,

process or an application. Metrics are often

compared to a defined baseline to analyse the

application or process's status and its overall

heath.

• Transaction Tracing: A trace aka transaction

tracing is used to understand the complete journey

of an end-user request as it travels through all

components, services, processes, and different

layers of a business application.

• Application Logging: Log files are automatically

created by an application and they provide

information about end-user behaviour and events

that took place in the application life cycle from

start-up till the shutdown.

Application monitoring provides detailed visibility

into the performance, availability, response times, and

user experience of application and its underlying

infrastructure. The application monitoring helps not

only to monitor but rapidly triage, diagnose, and

resolve issues leveraging cutting edge tools and

technologies. Application monitoring tools collect,

stores, and analyse the necessary data and metadata for

troubleshooting, optimizing performance, root cause

analysis, and final resolution. They typically rely on

different types of instrumentation and profiling

processes to provide real-time insights into the

application health and its status. When performance

exceeds automatically defined thresholds, application

teams are notified and then can drill down contextually

to trace transaction and performance issues across the

distributed infrastructure for triage and resolution.

Few most critical application monitoring metrics

include:

• Performance Monitoring: Measures the average

response time for end-user interactions to check if

application performance is affecting the speed.

• CPU usage: Monitor CPU usage, disk read/write

speeds, IOPS, and memory to see if application

performance is impacting these key parameters.

• Application availability and uptime: Measures

whether the application is online and available

and in good health to end-users. This is also

leveraged to determine compliance with an

organization’s SLA.

• Request Rates: Measures the amount of traffic

received by the application to identify any

significant increase, decreases or coinciding

users.

• Error rates: Observes how the application

degrades or fails at the software level.

• Discovery: Counts and monitors the servers,

applications, services, and processes that are

running at any one time.

Organizations create rules, so the monitoring tool alert

them when a problem arises or when an application's

performance metrics dips in a specific area. They can

also prioritize applications based on business

criticality. In virtualized deployments, APM tools can

help monitor application servers to ensure that they

comply with an SLA. Cloud introduces a host of

additional dependencies on application performance.

There is cloud application performance monitoring,

which focuses on tracking the performance of

applications based on private or hybrid cloud

deployment models.

Key Characteristics of the Modern Monitoring

Systems:

• Anomaly Detection. Anomaly detection

capabilities in monitoring tools can automatically

alert users when metrics deviate from the

thresholds, assess their impact, all without human

intervention.

• Correlations. Correlation engines go a level

deeper and compare all parameters that contribute

to metric outcomes. They analyse and measure

subtle changes in one or more business metrics.

• Root Cause Analysis. Root cause analysis engines

go even further and suggest possible causes of a

deviation from the normal benchmark of a

business metric or a group of metrics. These

engines articulate the cause from historical

correlations, or they provide IT-users with tools to

assist them localize a cause by comparing

multiple correlations.

• Automation: After detecting an anomaly, the

product will determine its root cause, suggest a

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 202

remediation, and predict the future events. They

may even suggest ways to optimize the business

process to eliminate future incidents.

TOOLS & METRICS

One must recognize which profiling & optimization

tools might help in analyzing the root cause of

performance issues in the application. One will need

both profiling, optimization and monitoring tools to

identify and triage the performance hotspots. Every

tool and profiler have its own features and advantages.

Few of these tools have characteristics that allow you

to get continuous feedback on the performance of code

and SQL. These tools provide impressive features that

help visualize the entire application and its

components, interfaces, database into a dashboard like

views that help you deep-dive in and triaging the

issues. The following tables provides the different

tools can leverage for this purpose.

Tooling Options Description Findings & KPIs

As-Is State Analysis

Static Analysis (Code)

SONARQube,

CAST Highlights,

Fortify, Veracode,

Checkmarx

Static code analysis is the best way to ensure code quality as it checks

the code thoroughly line by line and gives developers the opportunity

to correct flaws before the software goes live. This flags bugs, code

smells, security hotspots, and vulnerabilities. Though which, we can

also trace and tackle performance issues.

Bugs, coding standards, Security

hotspots and Vulnerabilities

MySQL Query

Analyzer,MySQL

Query Explorer,

Workbench

This tool will provide insights into optimum queries, errors in SQL,

severity of the errors, inefficiencies etc., through which

recommendations can be provided.

Optimum queries, errors in SQL,

severity of the errors,

inefficiencies

Dynamic Analysis (Run-Time)

KCashGrind,

QCashGrind,

CallGrind, Xdebug,

This is a profiling and instrumentation tool and will provide detail

interms of call graphs and tree maps, visualization of the APIs/Calls
Call graphs and Tree Maps

Visualization

App Dynamics,

Dynatrace, New

Relic, CA APM

Monitor software services and applications in real time — collect

detailed performance information on response time for incoming

requests, database queries, calls to caches, external HTTP requests,

and more.

Transaction Tracing, MySQL

Metrices, Query Throughput,

Query Execution Performance,

Connections, Success/Errors,

Buffer Pool usage

MySQL Tuner,

Releem

This is a tool to review MySQL installation and make adjustments to

increase performance and stability.
Performance and Stability

Table: Tooling - Static & Dynamic Analysis

This is highly advisable that every application one

builds should have the right set of performance testing

and profiling tools to ensure that the application runs

smoothly without a glitch. There are a variety of tools

available that can monitor and profile your

application’s performance as listed in the above table.

RELATED WORK

[1] & [2] This paper describes PASA, a method for

performance assessment of software architectures.

PASA uses the principles and techniques of software

performance engineering (SPE) to determine whether

an architecture is capable of supporting its

performance objectives

[3], The goal of this paper is to classify the

performance prediction and measurement approaches

for component-based software systems proposed

during the last ten years.

[4], This paper proposes a new approach to improve

the performance and scalability of HPC applications

on Amazon’s HPC Cloud.

[5], In this paper, we build performance models for

applications in virtualized environments. We identify

a key set of virtualization architecture independent

parameters that influence application performance for

a diverse and representative set of applications.

[6], This paper presented the business monitoring and

its trends. These systems detect anomalies, identify

correlations, and display potential root causes.

CONCLUSION AND FURTHER WORK

The architecture of a software system is the primary

factor in determining whether or not a system will

© January 2021| IJIRT | Volume 7 Issue 8 | ISSN: 2349-6002

IJIRT 150657 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 203

meet its performance and other quality goals.

Architecture assessment is a vital step in the creation

of new systems and the evaluation of the viability of

legacy systems for controlling the performance and

quality of systems.

Software performance is not achieved in isolation.

Performance objectives must be balanced with other

software quality concerns including reliability,

availability, extendibility. Sometimes, these

objectives conflict when architectural features have

opposing effects on different quality attributes. For

example, redundancy may increase availability but

negatively impact performance. Identifying the areas

of the architecture where conflicts occur and

quantifying their effects makes it possible to find a

workable compromise. As with performance

objectives, to evaluate the effect of architectural

decisions on qualities such as modifiability or

reliability, it is important that the requirements for

these attributes be stated precisely.

This paper presented an approach for performance

analysis and assessment of software systems. It

described the methods we use in a variety of

application domains including web-based systems,

financial applications, and real-time systems. It

described the key pillars of the approach which

consists of As Is Analysis, Static Analysis and

Dynamic Analysis. As next steps, research should be

conducted on the systems that automate things that

humans can’t do and augment what humans can with

real-time recommendations and a good degree of

automation.

REFERENCES

[1] PASASM: A Method for the Performance

Assessment of Software Architectures Lloyd G.

Williams, Connie U. Smith

[2] PASASM: An Architectural Approach to Fixing

Software Performance Problems Lloyd G.

Williams, Connie U. Smith

[3] Performance Evaluation of Component-based

Software Systems: A Survey Heiko Koziolek

[4] Improving HPC Application Performance in

Public Cloud Rashid Hassani, Md Aiatullah, Peter

Luksch

[5] Application Performance Modeling in a

Virtualized Environment Sajib Kundu, Raju

Rangaswami, Kaushik Dutta, Ming Zhao

[6] Business Monitoring Systems Using Machine

Learning to Analyze Business Metrics Wayne W.

Eckerson

[7] [7] The Architecture Tradeoff Analysis Method

Rick Kazman, Mark Klein, Mario Barbacci,Tom

Longstaff, Howard Lipson, Jeromy Carriere

AUTHORS BIOGRAPHY

Sameer S. Paradkar is an

enterprise architect with

more than 20 years of

extensive experience which

spans System Integration,

Product Development, and

advisory Organizations.

Sameer works as an SME on

architecture modernization

and transformation initiatives. He has worked on

multiple digital transformations, engagements and

large complex deals in North America, Europe,

Middle East, and ANZ regions that presented a phased

roadmap to the transformation maximizing business

value while minimizing costs and risks. Sameer is

certified and competent in different methodologies

and frameworks including: TOGAF, NGOSS (e-TOM

& SID), ITIL, COBIT, Agile, Scrum, DevOps, Scaled

Agile Framework – SAFe and Business Capability

Modeling. Sameer is part of the Architecture Group in

AtoS. Prior to AtoS, he has worked in top tier SI and

consulting organizations.

