
© January 2019 | IJIRT | Volume 5 Issue 8 | ISSN: 2349-6002

IJIRT 147526 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 249

An Empirical Study of Various Frequent Item Set Mining

Techniques

Utkarsh Kumar Shrivastava

Badwani

Abstract- Frequent item set mining has been a heart

favorite theme for data mining researchers for over a

decade. A large amount of literature has been dedicated

to this research and tremendous progress has been

made, ranging from efficient and scalable algorithms

for frequent item set mining in transaction databases to

numerous research frontiers, such as sequential pattern

mining, structured pattern mining, correlation mining,

associative classification, and frequent pattern-based

clustering, as well as their broad applications. In this

paper, a literature review of various latest techniques

for mining frequent items from a transaction data base

are presented in critical manner.

Index Terms- Data Mining, Frequent Pattern Mining,

Support, Confidence, Apriori, DIC, Partitioning.

1. INTRODUCTION

Data mining [1] is the process of extracting hidden

patterns from data. As more data is gathered, with the

amount of data doubling every three years, data

mining is becoming an increasingly important tool to

transform this data into knowledge. It is commonly

used in a wide range of applications, such as

marketing, fraud detection and scientific discovery.

Data mining can be applied to data sets of any size,

and while it can be used to uncover hidden patterns, it

cannot uncover patterns which are not already present

in the data set.

The discovered knowledge [2][3] can be used in

many ways in corresponding applications. For

example, identifying the frequently appeared sets of

items in a retail database can be used to improve the

decision making of merchandise placement or sales

promotion. Discovering patterns of customer

browsing and purchasing (from either customer

records or Web traversals) may assist the modeling of

user behaviors for customer retention or personalized

services. Given the desired databases, whether

relational, transactional, spatial, temporal, or

multimedia ones, we may obtain useful information

after the knowledge discovery process if appropriate

mining techniques are used

A typical process of knowledge discovery in

databases is illustrated in Fig. 1.

Fig. 1. The process of knowledge discovery in

databases [1]

Knowledge discovery in databases is a complex

process, which covers many interrelated steps. Key

steps in the knowledge discovery process are:

 Data Cleaning: remove noise and inconsistent

data.

 Data Integration: combine multiple data sources.

 Data Selection: select the parts of the data that

are relevant for the problem.

 Data Transformation: transform the data into a

suitable format.

 Data Mining: apply data mining algorithms and

techniques.

 Pattern Evaluation: evaluate whether they found

patterns meet the requirements

 Knowledge Presentation: present the mined

knowledge to the user (e.g., Visualization).

The key step of association mining is frequent item

set (pattern) mining which is to mine all item sets

satisfying user specified minimum support [5]

Generally, a large number of these rules will be

pruned after applying the support and confidence

© January 2019 | IJIRT | Volume 5 Issue 8 | ISSN: 2349-6002

IJIRT 147526 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 250

thresholds. Therefore most of the previous

computations will be wasted. To overcome this

problem and to improve the performance of the rule

discovery algorithm, the association rule may be

decomposed into two phases:

1. Generate the large item sets: the sets of items

that have transaction support above a

predetermined minimum threshold known as

frequent Item sets.

2. Using the large item sets to generate the

association rules for the database that has

confidence above a predetermined minimum

threshold.

The overall performance of mining association rules

is depends primarily by the first step. The second step

is easy. Once the large itemsets are identified the

corresponding association rules can be derived in

straightforward manner. The main consideration of

the thesis is First step i.e. to find the extraction of

frequent itemsets.

2. LITERATURE SURVEY

FP-Growth Algorithm

The most popular frequent itemset mining called the

FP-Growth algorithm was introduced by [5]. The

main aim of this algorithm was to remove the

bottlenecks of the Apriori-Algorithm in generating

and testing candidate set. The problem of Apriori

algorithm was dealt with, by introducing a novel,

compact data structure, called frequent pattern tree,

or FP-tree then based on this structure an FP-tree-

based pattern fragment growth method was

developed. FP-growth uses a combination of the

vertical and horizontal database layout to store the

database in main memory. Instead of storing the

cover for every item in the database, it stores the

actual transactions from the database in a tree

structure and every item has a linked list going

through all transactions that contain that item. This

new data structure is denoted by FP-tree (Frequent-

Pattern tree) [4]. Essentially, all transactions are

stored in a tree data structure.

Broglet’s FP-Growth

Broglet implemented an efficient FP-Growth[1]

algorithm using C Language. The FP-growth in his

implementation preprocesses the transaction database

according to [1] is as follows:

1. In an initial scan the frequencies of the items

(support of single element item sets) are

determined.

2. All infrequent items, that is, all items that appear

in fewer transactions than a user-specified

minimum number are discarded from the

transactions, since, obviously, they can never be

part of a frequent item set.

3. The items in each transaction are sorted, so that

they are in descending order with respect to their

frequency in the database.

Eclat

Eclat [11, 8, 3] algorithm is basically a depth-first

search algorithm using set intersection. It uses a

vertical database layout i.e. instead of explicitly

listing all transactions; each item is stored together

with its cover (also called tidlist) and uses the

intersection based approach to compute the support

of an itemset. In this way, the support of an itemset X

can be easily computed by simply intersecting the

covers of any two subsets Y, Z ⊆ X, such that Y U Z

= X. It states that, when the database is stored in the

vertical layout, the support of a set can be counted

much easier by simply intersecting the covers of two

of its subsets that together give the set itself.

SaM Algorithm

The SaM (Split and Merge) algorithm established by

[10] is a simplification of the already fairly simple

RElim (Recursive Elimination) algorithm. While

RElim represents a (conditional) database by storing

one transaction list for each item (partially vertical

representation), the split and merge algorithm

employs only a single transaction list (purely

horizontal representation), stored as an array.

This array is processed with a simple split and merge

scheme, which computes a conditional database,

processes this conditional database recursively, and

finally eliminates the split item from the original

(conditional) database.

Apriori Algorithm

The first algorithm for mining all frequent item sets

and strong association rules was the AIS algorithm

by [6]. Shortly after that, the algorithm was improved

and renamed Apriori. Apriori algorithm is, the most

classical and important algorithm for mining frequent

item sets. Apriori is used to find all frequent item sets

© January 2019 | IJIRT | Volume 5 Issue 8 | ISSN: 2349-6002

IJIRT 147526 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 251

in a given database DB. The key idea of Apriori

algorithm is to make multiple passes over the

database. It employs an iterative approach known as a

breadth-first search (level-wise search) through the

search space, where k-item sets are used to explore

(k+1)-item sets

Direct Hashing and Pruning (DHP):

It is absorbed that reducing the candidate items from

the database is one of the important task for

increasing the efficiency. Thus a DHP technique was

proposed [7] to reduce the number of candidates in

the early passes C for k 1 and thus the size of

database. In this method, support is counted by

mapping the items from the candidate list into the

buckets which is divided according to support known

as Hash table structure. As the new item set is

encountered if item exist earlier then increase the

bucket count else insert into new bucket. Thus in the

end the bucket whose support count is less the

minimum support is removed from the candidate set.

In this way it reduce the generation of candidate sets

in the earlier stages but as the level increase the size

of bucket also increase thus difficult to manage hash

table as well candidate set.

Partitioning Algorithm:

Partitioning algorithm [9] is based to find the

frequent elements on the basis partitioning of

database in n parts. It overcomes the memory

problem for large database which do not fit into main

memory because small parts of database easily fit

into main memory. This algorithm divides into two

passes,

1. In the first pass whole database is divided into n

number of parts.

2. Each partitioned database is loaded into main

memory one by one and local frequent elements

are found.

3. Combine the all locally frequent elements and

make it globally candidate set.

4. Find the globally frequent elements from this

candidate set.

It should be noted that if the minimum support for

transactions in whole database is min_sup then the

minimum support for partitioned transactions is min-

sup number of transaction in that partition.

A local frequent item set may or may not be frequent

with respect to the entire database thus any item set

which is potentially frequent must include in any one

of the frequent partition.

Sampling Algorithm:

This algorithm [10] is used to overcome the

limitation of I/O overhead by not considering the

whole database for checking the frequency. It is just

based in the idea to pick a random sample of item set

R from the database instead of whole database D.

The sample is picked in such a way that whole

sample is accommodated in the main memory. In this

way we try to find the frequent elements for the

sample only and there is chance to miss the global

frequent elements in that sample therefore lower

threshold support is used instead of actual minimum

support to find the frequent elements local to sample.

In the best case only one pass is needed to find all

frequent elements if all the elements included in

sample and if elements missed in sample then second

pass are needed to find the item sets missed in first

pass or in sample [12].

Thus this approach is beneficial if efficiency is more

important than the accuracy because this approach

gives the result in very less scan or time and

overcome the limitation of memory consumption

arises due to generation of large amount of datasets

but results are not as much accurate.

Dynamic Item set Counting (DIC):

This algorithm [4] also used to reduce the number of

database scan. It is based upon the downward

disclosure property in which adds the candidate item

sets at different point of time during the scan. In this

dynamic blocks are formed from the database marked

by start points and unlike the previous techniques of

Apriori it dynamically changes the sets of candidates

during the database scan. Unlike the Apriori it cannot

start the next level scan at the end of first level scan,

it start the scan by starting label attached to each

dynamic partition of candidate sets.

In this way it reduce the database scan for finding

the frequent item sets by just adding the new

candidate at any point of time during the run time.

But it generates the large number of candidates and

computing their frequencies are the bottleneck of

performance while the database scans only take a

small part of runtime.

Assumption: The performance of all the above

algorithms relies on an implicit assumption that the

© January 2019 | IJIRT | Volume 5 Issue 8 | ISSN: 2349-6002

IJIRT 147526 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 252

database is homogenous and thus they will not

generate too many extra candidates than Apriori

algorithm does. For example, if all partitions in

Partition algorithm are not homogenous and nearly

completely different sets of local frequent itemsets

are generated from them, the performance cannot be

good.

3. CONCLUSION

Frequent pattern mining is a favourite topic of many

researchers across the globe. Frequent item set

mining has a wide range of real world applications. It

affects decision making of many industries. This

paper presented a comprehensive survey of latest

techniques for mining frequent patterns from a

standard data set. This review will be useful for

future researchers of frequent pattern mining.

REFERENCES

[1] Tan P.-N., Steinbach M., and Kumar V.

“Introduction to data mining, Addison Wesley

Publishers”. 2006

[2] Nizar R.Mabrouken, C.I.Ezeife. Taxonomy of

Sequential Pattern Mining Algorithm”. In Proc.

in ACM Computing Surveys, Vol 43, No 1,

Article 3, November 2010.

[3] A.M.Said, P.P.Dominic, A.B. Abdullah. “A

Comparative Study of FP-Growth Variations”. In

Proc. International Journal of Computer Science

and Network Security, VOL.9 No.5 may 2009.

[4] Brin.S, Motwani. R, Ullman. J.D, and S. Tsur.

“Dynamic itemset counting and implication rules

for market basket analysis”. In Proc. ACM-

SIGMOD Int’l Conf. Management of Data

(SIGMOD), May 1997, pages 255–264.

[5] C. Borgelt. “An Implementation of the FP-

growth Algorithm”. Proc. Workshop Open

Software for Data Mining, 1–5.ACMPress, New

York, NY, USA 2005.

[6] Ling Chen, Shan Zhang,Li Tu, “An Algorithm

for Mining Frequent Items on Data Stream Using

Fading Factor”.33rd Annual IEEE International

Computer Software and Applications

Conference.172-179,2009.

[7] Cai-xia Meng, An Efficient Algorithm for

Mining Frequent Patterns over High Speed Data

Streams. World Congress on Software

Engineering,IEEE 2009, 319-323.

[8] Varun Kumar,Rajanish Dass.Proceedings of the

43rd Hawaii International Conference on System

Sciences, 2010 IEEE, 978-0-7695-3869-3.

[9] Sonali Shukla, Sushil Kumar, Bhupendra

Verma,A Linear Regression-Based Frequent

Itemset Forecast Algorithm for Stream Data.

International Conference on Methods and

Models in Computer Science, 2009.

[10] ZHOU Jun, CHEN Ming, XIONG Huan A More

Accurate Space Saving Algorithm for Finding

the Frequent Items.IEEE-2010.

[11] Yong-gong Ren,Zhi-dong Hu,Jian Wang. An

Algorithm for Predicting Frequent Patterns over

Data Streams Based on Associated Matrix. Ninth

Web Information Systems and Applications

Conference, 2012. 95-98.

[12] Mahmood Deypir, Mohammad Hadi

Sadreddini,A New Adaptive Algorithm for

Frequent Pattern Mining over Data Streams,

ICCKE,2011, 230-235 FLEXChip Signal

Processor (MC68175/D), Motorola, 1996.

