Experimental Investigation on effect of Tarbulators on performance of heat Exchanger

S.A.Khandekar¹, B.N.Kale²

¹Post Graduation Scholar, Department of Mechanical Engineering, Dr.Babasaheb Ambedkar College of Engineering and Research, Wanadongari, Nagpur, India ²Asst. Professor, Department of Mechanical Engineering, Dr.Babasaheb Ambedkar College of Engineering and Research, Wanadongari, Nagpur, India

Abstract- The effects of V-nozzle inserts on heat transfer and friction characteristics in a single tube heat exchanger has been experimentally studied. The vnozzle with pitch ratio 6.0 used. Experimental investigations have been carried out to study the effects of the V-nozzle turbulators on heat transfer augumentation, friction and enhancement efficiency, in a circular tube. It is found that using the V-nozzle can help to increase considerably the heat transfer rate at about 130% over the plain tube. A maximum gain of 1.23 on enhancement efficiency is obtained for the pitch ratio used, PR=6.0. This indicates that the effect of the reverse/re-circulation flows can improve the heat transfer rate in the tube. In addition, correlations from the results are presented and Reynolds number ranging from 8000 - 35000 experimentally.

Index Terms- Heat transfer enhancement, v-nozzle, heat transfer, turbulators, reynolds no.

I. INTRODUCTION

Heat transfer enhancement is the process of improving the performance of a heat transfer system. It generally means increasing the heat transfer coefficient. The performance of heat exchanger depends how effectively heat is utilized. The high performance of heat exchangers are very much essential in many practical applications such as vehicles. refrigeration aerospace, and air conditioning, cooling of electric equipment and so on. Reduction of the size of the heat exchanger may be possible due to improvement in the performance of heat exchanger. On the other hand, a high performance heat exchanger of a fixed size can give a increased heat transfer rate and also there is decrease in temperature difference between the process fluids enabling efficient utilization of thermodynamic

availability. The performance can be improved by using various augmentation techniques such as finned surfaces, integral roughness and insert devices. A variety of different techniques are employed for the heat transfer process.

Many active and passive techniques are currently being employed in heat exchangers, with twisted tape inserts providing a cost-effective and efficient means of augmenting heat transfer. The reverse flow device or the turbulator is widely employed in heat transfer engineering applications. The reverse flow is sometimes called "re-circulation flow". The effect of and boundary layer eruption reverse flow (dissipation) is to enhance the heat transfer coefficient and momentum transfers. The reverse flow with high turbulent flow can improve convection of the tube wall by increasing the effective axial Reynolds number, decreasing the cross-section flow area, and increasing the mean velocity and temperature gradient. It can help to produce the higher heat fluxes and momentum transfer due to the large effective driving potential force but also higher pressure drop. The strengths of reverse flow and the reattached position are the main interest in many heat transfer applications such as heat exchangers, combustion chambers, gas turbine blades, and electronic devices.

II. EXPERIMENTAL SETUP

The experiments are carried out as shown in Fig. 1 for measurement of flow rate and heat transfer which is shown in figure. The copper test tube has a length of 900 mm, with diameter (D), 21.0 mm and 1.25 mm thickness (t) as depicted in Fig. 2. The tube was heated by continually winding flexible electrical wire

to provide a uniform heat flux boundary condition. The electrical output power was controlled by a variance transformer to obtain a constant heat flux along the entire length of the test section and by keeping the current less than 2 A. The outer surface of the test tube was well insulated to minimize convective heat loss to surroundings, and necessary precautions were taken to prevent leakages from the system. The inner and outer temperatures of the bulk air were measured at certain points with a multichannel temperature measurement unit in conjunction with the Chromel–constantan thermocouples as can be seen in Fig. 2. Five thermocouples were tapped on the local wall of the tube and the thermocouples were placed round the tube to measure the circumferential temperature variation, which was found to be negligible.

Figure 2 V-NOZZLE Turbulator

The mean local wall temperature was determined by means of calculations based on the reading of Chromel–constantan thermocouples. Fig. 2 represents the V-nozzle arrangement used in the present work. The V-nozzle was made of Mild steel 140 mm inlength and its end and throat diameters were 19 mm and 15 mm, respectively. The V-nozzles were placed with pitch ratio PR=6.0 with pitch lengths, l=140 mm for experiment.

In the apparatus setting above, the inlet bulk air at 20 °C from a 0.79 kW blower was directed through the orifice meter and passed to the heat transfer test section. The air flow rate was measured by an orifice meter, built according to ASME standard.

Manometric fluid was used in U-tube manometers with specific gravity (SG) of 0.981 to ensure reasonably accurate measurement of the low pressure drop accured at low Reynolds numbers. Also, the pressure drop of the heat transfer test tube was measured with inclined U-tube manometers. The volumetric air flow rates from the blower were adjusted by varying motor speed through the inverter, situated before the inlet of test tube. During the experiments, the bulk air was heated by an adjustable electrical heater wrapping along the test section. Both the inlet and outlet temperatures of the bulk air from the tube were measured by multi-channel Chromel– constantan thermocouples.

It was necessary to measure the temperature at Six stations altogether on the outer surface of the heat transfer test pipe for finding out the average Nusselt number. For each test run, it was necessary to record the data of temperature, volumetric flow rate and pressure drop across the test section and air flow velocity were measured for heat transfer of the heated tube with V-nozzles. The average Nusselt numbers were calculated and discussed where all fluid properties were determined at the overall bulk mean temperature.

III. MATHAMATICAL FORMULAE

In the present work, the air is used as working fluid and flowed through a uniform heat flux and insulation tube. The steady state of the heat transfer rate is assumed to be equal to the heat loss from the test section which can be expressed as:

Qair = Qconv in which Qair = mCpa(To-Ti) The convection heat transfer from the test section can be written as: Qconv = hA(Tw-Tb)Where as, Tb = (To-Ti)/2 And Tw = Σ Tw/6

where Tw is the local wall temperature and evaluated at the outer wall surface of the tube. The averaged wall temperatures are calculated from 5 points, lined between the inlet and the exit of the test pipe. The average heat transfer coefficient, h and the mean Nusselt number, Nu are estimated as follows:

h = mCpa (To-Ti)/A(Tw-Tb)Nu = hD/k The Reynolds number is given by Re = UD/v

Friction factor, f can be written as

$$f = \frac{\Delta P}{\left(\frac{L}{D}\right)\left(\rho \frac{U^2}{2}\right)}$$

IV. EXPERIMENTAL RESULTS

The experiments were conducted on the test rig initially with the plane circular pipe and the different heat transfer characteristics were calculated and then the same is done for the v-nozzle. The air supply can be controlled by the valve and various mass flow rate are provided for which the heat transfer characteristics are calculated.

The graph shows the relations between Reynolds no and nussult no. the nussult no increases with the increase in the Reynolds no. and the Reynolds no increases in the v-nozzle.

The graph shows the relations between Reynolds no and friction factor. the friction factor reduces with the

increase in the Reynolds no. and the friction factor increases in the v-nozzle.

The graph shows the relations between Reynolds no and heat transfer coefficient. The heat transfer coefficient increases with the increase in the Reynolds no. and the friction factor increases in the vnozzle.

V. CONCLUSION

Experimental investigations have been carried out to know the effects of the V-nozzle turbulators on heat transfer, friction and enhancement efficiency, in a circular tube. We used the v-nozzle with the pitch ratio of 5.09 and we found the heat transfer argumentation. The results are

- The heat transfer in the circular tube could be promoted by fitting with V-nozzles while it brings about the energy loss of the fluid flow. The mean heat transfer rates obtained from using the Vnozzles 139% over the plain tube. However, the increase in friction factor is much higher than the increase in Nusselt number at the same Reynolds number.
- 2. The enhancement efficiency decreases with increasing Reynolds number. The maximum value of enhancement efficiency obtained from using the 1.02

REFERENCES

 Heat transfer—A review of 2003 literature R.J. Goldstein *, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V.Srinivas 679

- [2] Heat transfer a review of 2000 literature R.J. Goldstein *, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick.
- [3] The investigation of groove geometry effect on heat transfer for internally grooved tubes Kadir Bilen a,*, Murat Cetin b, Hasan Gul c, Tuba Balta a.
- [4] Heat transfer enhancement in a tube using circular cross sectional rings separated from wall Veysel Ozceyhan a,*, Sibel Gunes a, Orhan Buyukalaca b, Necdet Altuntop a.
- [5] Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers Kenan Yakut*, Bayram Sahin.
- [6] Thermal performance in circular tube fitted with coiled square wires Pongjet Promvonge
- [7] Heat transfer augmentation by swirl generators inserted into a tube with constant heat flux□ İrfan Kurtbaş a,_ , Fevzi Gülçimen b, Abdullah Akbulut c, Dinçer Buran d.
- [8] Heat transfer behaviors in a tube with combined conical-ring an twisted-tape insert P. Promvonge a,_, S. Eiamsa-ard b.
- [9] Heat transfer behaviors in round tube with conical ring inserts P. Promvonge *
- [10] Thermal augmentation in circular tube with twisted tape and wire coil turbulators Pongjet Promvonge *
- [11] Heat transfer in a circular tube fitted with freespacing snail entry and conical-nozzle turbulators □ P. Promvonge a,_, S. Eiamsa-ard b.
- [12] Heat transfer enhancement in a tube with combined conicalnozzle inserts and swirl generator P. Promvonge *, S. Eiamsa-ard.
- [13] Heat transfer augmentation in a circular tube using V nozzle turbulator inserts and snail entry Pongjet Promvonge a,*, Smith Eiamsa-ard b,.
- [14] Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators by Pongjet Promvonge a, Smith Eiamsa-ard
- [15] S. Eiamsa-ard , P. Promvonge b, "Experimental investigation of heat transfer and friction characteristics in a circular tube fitted with vnozzle turbulators."