
© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 170

Implementation of Fast Counting L2 Cache Architecture

Using Bloom Filter

S. Sathyadeepa
1
, T. Sasikala

2
, B. Suresh

3

1
Assistant Professor, Department of Electronics, Hindusthan College of Arts and Science, Coimbatore
2&3

Department of Electronics and Communication Systems, VLB Janakiammal College of Arts and

Science, Coimbatore

Abstract- Many high-performance microprocessors

employ cache write-through policy for performance

improvement. However, write-through policy also

incurs large energy overhead due to the increased

accesses to caches at the L2 caches. To overcome this

problem we use way tagged cache. In the exiting work,

we present novel ideas for both cache hit and miss

predictions. Partial tag enhanced bloom filter to reduce

the tag comparisons of the cache hit prediction method.

In the proposed technique enables CBFs(counting

bloom filters)to improve upon the energy, delay, and

complexity of various processor structure when

compared with exiting work. This paper studies the

energy, delay, and area characteristics of two

implementations for CBFs using full custom layouts in a

commercial 0.13- m fabrication technology. One

implementation is S -CBF, other implementation is L-

CBF. Our results demonstrate that for a variety of L-

CBF organizations, the estimations by analytical models

are within 5% and 10% of spectra simulation results.

Index Terms- Computer architecture, counting bloom

filters, Implementation, low power, microprocessors.

 INTRODUCTION

Multi-Level on-chip cache systems have been widely

adopted in high-performance microprocessors. To

keep data consistence throughout the memory

hierarchy, write-through and write-back policies are

commonly employed. Under the write- back policy, a

modified cache block is copied back to its

corresponding lower level cache only when the block

is about to be replaced. While under the write-

through policy, all copies of a cache block are

updated immediately after the cache block is

modified at the current cache, even though the block

might not be evicted. As a result, the write-through

policy maintains identical data copies at all levels of

the cache hierarchy throughout most of their life time

of execution. This feature is important as CMOS

technology is scaled into the nanometre range, where

soft errors have emerged as a major reliability issue

in on-chip cache systems. While enabling better

tolerance to soft errors, the write-through policy also

incurs large energy overhead. This is because under

the write-through policy, caches at the lower level

experience more accesses during write operations.

Consider a two-level (i.e., Level-1 and Level-2)

cache system for example. If the L1 data cache

implements the write-back policy, a write hit in the

L1 cache does not need to access the L2 cache. In

contrast, if the L1 cache is write-through, then both

L1 and L2 caches need to be accessed for every write

operation. Obviously, the write-through policy incurs

more write accesses in the L2 cache, which in turn

increases the energy consumption of the cache

system. Power dissipation is now considered as one

of the critical issues in cache design. Studies have

shown that on-chip caches can consume about 50%

of the total power in high-performance

microprocessors.

The way-tagged cache, to improve the energy

efficiency of write-through cache systems with

minimal area overhead and no performance

degradation.

Several studies have investigated the reduction of tag

comparisons within the L2 cache. Such studies can be

classified into two categories based on the method

used for reducing tag comparisons: cache hit

prediction and cache miss prediction.

The cache hit prediction methods typically use two-

step tag comparison. In the first step, tags are

compared for cache ways that are likely to yield a

cache hit. If the prediction is successful, the power

consumption otherwise needed for comparison with

the other tags can be saved. However, if the

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 171

prediction fails, tag comparisons with the remaining

tags are performed in the next cycle, thereby resulting

in an additional latency cycle. Because tag

comparisons are performed even in the case of cache

misses, the cache hit prediction methods may lead to

high power consumption in applications with high

cache miss rates.

The cache miss prediction methods try to predict

cache misses, e.g., based on the Bloom filter . If the

prediction is correct, tag comparisons are skipped,

thereby saving the energy consumed in tag

comparison. Improving the prediction accuracy (e.g.,

by using a larger Bloom filter) further reduces the

amount of energy consumed in tag comparison. In

this paper, we propose a novel tag comparison

method that exploits predictions of both cache hits

and misses.

The contributions of our work are as follows:

1) A partial tag-enhanced Bloom filter to improve

the energy efficiency of cache miss predictions;

2) Hot/cold checks to improve the efficiency of

cache hit prediction with energy-aware dynamic

management of the hot/cold data and a

pessimistic two-step tag comparison for cold

data;

3) Dynamic reordering of cache hit/miss prediction

methods for multistep tag comparison that can

further reduce the energy consumed in tag

comparison by adapting to dynamically changing

cache access behavior;

4) Performance guarantees to ensure a tradeoff

between cache energy consumption and

additional latency overhead, especially in the

case of latency-critical programs.

This work focuses exclusively on the second factor as

it investigates implementations of a CBF that

improve its energy and delay characteristics. A key

contribution of this work is the introduction of

L-CBF. L-CBF is an energy- and delay-efficient

implementation that utilizes an array of up/down

linear feedbackshift registers (LFSRs) and local zero

detectors. Previous work assumes a straightforward

SRAM-based implementation that we will refer to it

as S-CBF.

The significant contributions of this work are as

follows.

1) It proposes L-CBF, a novel, energy- and speed-

efficient implementation for CBFs.

2) It compares the energy, delay, and area of two

CBF implementations, L-CBF and S-CBF, using

3) their circuit-level implementations and full-

custom layouts in 0.13- m fabrication

technology.

4) It presents analytical delay and energy models

for L-CBF and compares the model estimations

against simulation results.

II. PRELIMINARIES AND OUR MOTIVATIONS

A. Bloom Filter

The Bloom filter is utilized to check the approximate

non-member ship of a set. When applied to reducing

tag comparisons, each cache way is equipped with a

Bloom filter. A query to the Bloom filter (e.g., “is

address 0×100 in the cache way?”) gives either of

two results: negative (definite nonexistence) and

positive (likely existence). Note that a negative result

from the Bloom filter guarantees nonexistence,i.e., a

cache way miss.

Preliminaries and Our Motivations cache way is

accessed, first the Bloom filter per cache way is

looked up. If the Bloom filter indicates nonexistence,

then tag comparison for the cache way is avoided,

thereby saving the energy that would have been

consumed in tag comparison. Both: 1) the smaller

energy consumed to access the Bloom filter rather

than the tag; and

 2) the high prediction accuracy

for cache way misses reduce the energy consumed in

tag comparison. For instance, in the case of a cache

way miss, using the Bloom filter produces a net

energy gain as long as the following relationship

holds

EB < p×ET

WhereEB and ET represent the energy consumed

while accessing the Bloom filter and the tag structure,

respectively, and pis the cache miss prediction

accuracy of the Bloom filter.

III. CBFS

This section reviews CBFs and their characteristics.

Additionally, it discusses the previously assumed

implementation for the CBFs, which has not been

investigated at the physical level.

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 172

Fig. 1. CBF as a black box

A. Introduction to CBFs:

1) CBF as a Black Box:As shown in Fig. 1, a CBF is

conceptually an array of counts indexed via a hash

function of the element under membership test. A

CBF has three operations:1) Increment count (INC);

2) Decrement count (DEC); and

3) Test if the count is zero (PROBE). The first two

operations increment or decrement the corresponding

count by one, and the third one checks if the count is

zero and returns true or false (single-bit output). We

will refer to the first two operations as updates and to

the third one as a probe. A CBF is characterized by

its number of entries and the width of the count per

entry.

2) CBF Characteristics: Membership tests using

CBFs are performed by probe operations. In response

to a membership test, a CBF provides one of the

following two answers: 1) “definite no,” indicating

that the element is definitely not a member of the

large set and

 2) “I don’t know,” implying that the CBF cannot

assist in a membership test, and the large set must be

searched. The CBF is capable of producing the

desired answer to a membership test much faster and

saves power on two conditions. First, accessing the

CBF is significantly faster and requires much less

energy than accessing the large set. Second, most

membership tests are serviced by the CBF. The latter

is investigated by studying the application behavior.

For instance, when CBF is exploited as a miss

predictor, previous work shows that more than 95%

of the accesses to the cache tag array are serviced by

the CBF.

The CBF uses an imprecise representation of the

large set to be searched. Ideally, in the CBF, a

separate entry would exist for every element of the

set. In this case, the CBF would be capable of

precisely representing any set. However, this would

require a prohibitively large array negating any

benefits. In practice, the CBF is a small array and the

element addresses are hashed onto this small array.

Because of hashing, multiple addresses may map

onto the same array entry.

Hence, the CBF constitutes an imprecise

representation of the content of the large set and

keeps a superset of the existing elements. This

impreciseness is the reason of the “I don’t know”

answers by the CBF. To reduce the frequency of such

answers, and hence improving accuracy, multiple

CBFs with different hash functions can be used.

Fig. 2. S-CBF architecture: an SRAM holds the CBF

counts; INC/DEC: read modify-write sequences;

PROBE: read-compare sequence.

An “I don’t know” answer to a membership test

incurs power and delay penalty since in case of such

an answer, the large set must be checked in addition

to the CBF. The delay penalty occurs if the CBF and

the large set accesses are serialized. This delay

penalty can be avoided if we probe the CBF and the

large set in parallel; in this case, power benefits will

be possible only if the in-progress access to the large

set can be terminated once the CBF provides a

definite answer. These overheads do not concern us

as often CBF can provide the definite answer.

3) CBF Functionality: The CBF operates as follows.

Initially, all counts are set to zero and the large set is

empty. When an element is inserted into, or deleted

from the large set, the corresponding CBF count is

incremented or decremented by one.

To test whether an element currently exists in the

large set, the corresponding CBF count is inspected.

If the count is zero, the element is definitely not in

the large set; otherwise, CBF cannot assist and the

large set must be searched.

B. S-CBF: SRAM-Based CBF Implementation:

Previous work assumes a CBF implementation

consisting of an SRAM array of counts, a shared

up/down counter, a zero comparator, and a small

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 173

controller [2]. We will refer to this implementation as

S-CBF. The architecture of S-CBF is depicted in Fig.

2.

Updates are implemented as read-modify-write

sequences as follows:

1) The count is read from the SRAM; 2) It is adjusted

using the counter; and 3)It is written back to the

SRAM. The probe operation is implemented as a read

from the SRAM, and a compare with zero using the

zero-comparator. A small controller coordinates this

sequence of actions. An optimization was proposed

to speedup probe operations and to reduce their

power. Specifically, an extra bit Z is added to each

count. When the count is nonzero the Z is set to false

and when the count is zero, the Z is set to true.

Probes can now simply inspect.The Z bits can be

implemented as a separate SRAM structure which is

faster and requires much less power. This type of

optimization iscompatible with bothS-CBF and L-

CBF architectures.

IV. L-CBF: A NOVEL LFS BASED CBF

IMPLEMENTATION

Demonstrates quantitatively that much of the energy

in S-CBF is consumed on the SRAM’s bit lines and

word lines. Additionally, in S-CBF, both delay and

energy suffer as updates require two SRAM accesses

per operation.

The shared counter may increase the energy and the

delay further.

We could avoid accesses over long bit lines by

building an array of up/down counters with local zero

detectors. In this way, CBF operations would be

localized and there would be no need to read/write

values over long bit lines. L-CBF is such a design.

For the CBF, the actual count values are not

important and we only care whether a count is “zero”

or “nonzero” .Hence, any counter that provides a

deterministic up/down sequence can be a choice of

counter for the CBF.

L-CBF consists of an array of up/down LFSRs with

embedded zero detectors. L-CBF employs up/down

LFSRs that offer a better delay, power, and

complexity trade off than other synchronous up/down

counters with the same count sequence length .As

demonstrates,

L-CBF significantly reduces energy and delay

compared to S-CBF at the cost of more area. The

increase in area though is a minor concern in modern

processor designs given the abundance of on-chip

resources and the very small area of the CBF

compared to most other processor structures(e.g.,

caches and branch predictors).The rest of this section

reviews up/down (reversible) LFSRs and discusses

the architecture of L-CBF.

A. LFSRs

A maximum-length -bit LFSR sequences through 2n-

1states. It goes through all possible code

permutations except one. The LFSR consists of a

shift register and a few embedded XNOR gates fed

by a feedback loop. Each LFSR has the following

defining parameters:

 width, or size, of the LFSR (it is equal to the

number of bits in the shift register);

 number and positions of taps (taps are special

locations in

 the LFSR that have a connection with the

feedback loop);

 initial state of the LFSR which can be any value

except one (all ones for XNOR feedback).

Without the loss of generality, we restrict our

attention to the Galois implementation of LFSRs.

State transitions proceed as follows. The non-tapped

bits are shifted from the previous position. The

tapped bits are XNORed with the feedback loop

before being shifted to the next position. The

combination of the taps and their locations can be

represented by a polynomial.

Fig. 3 shows an 8-bit maximum-length GaloisLFSR,

its taps, and polynomial. By appropriately selecting

the tap locations it is always possible to build a

maximum-length LFSR of any width with either two

or four taps. Additionally, ignoring wire length

delays and the fan-out of the feedback path, the

delays of the maximum-length LFSR is independent

of its width (size) .Delay increases only slightly with

size, primarily due to increased capacitance on the

control lines.

Fig. 3.Eight-bit maximum-length LFSR

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 174

Fig. 4. Three-bit maximum-length up/down LFSR.

1) Up/Down LFSRs:

The tap locations for a maximum-length,

unidirectional n -bit LFSR can be represented by a

primitive polynomial g(x) as depicted in (1)

g(x)=∑ni=0Ci ×Xi(C0=Cn=1)--------(1)

In (1),Xi corresponds to the output of theith bit of the

shift register and the constants Ci are either 0 (no tap)

or 1 (tap).

Given g(x), a primitive polynomial h(x) for an LFSR

generates the reverse sequence as depicted in (2)

h(x)= ∑ni=0Ci ×X n-i(C0=Cn=1)-----(2)

The superposition of the two LFSRs (the original and

its reverse) forms a reversible “up/down” LFSR. The

up/down LFSR consists of a shift register similar to

the one used for the unidirectional lLFSR; a 2-to-1

multiplexer per bit to control the shift direction; and

twice as many XNOR gates as the unidirectional

LFSR. Fig. 4 shows the construction of a 3-bit

maximum-length up/down LFSR. It also depicts the

polynomials and count sequence of both up and down

directions. In general, it is possible to construct a

maximum-length up/down LFSR of any width with

two or six XNOR gates (i.e., four or eight taps.

2) Comparison With Other Up/Down Counters: In

this section, we compare LFSR counters with other

synchronous up/down counters that could be a choice

of counter for CBFs. We restrict our discussion to

synchronous up/down counters of Width n with a

count sequence of at least 2n-1states.The simplest

type of synchronous counter is the binary Modulo-

2nn -bit counter. For this counter, speed and area are

conflicting qualities due to carry propagation. For

example, the -bit ripple-carry synchronous counter,

one of the simplest counters, has a delay of O(n).

Counters with a Manchester carry-chain, carry-look

ahead and binary tree carry propagation have delay of

O(log n) though at the cost of more energy and area.

In applications where the count sequence is

unimportant [e.g., ointers of circular first-inputs–

first-outputs (FIFOs) and frequency dividers], an

LFSR counter offers a speed-power-area efficient

solution. The delay of an LFSR is nearly independent

of its size. Specifically, the LFSR delay consists of a

flip-flop delay, an XNOR gate delay, and a feedback

loop delay. The feedback loop delay is the

propagation delay of the last flip-flop output to the

input of the furthest XNOR gate from the last flip-

flop. Ignoring secondary effects on the feedback path,

the delay of an n-bit maximum length LFSRis O(1)

and independent of the counter size . These

characteristics make LFSRs a suitable counter choice

for CBFs.

B. L-CBF Implementation

Fig. 5 depicts the high-level organization of L-CBF.

L-CBF includes a hierarchical decoder and a

hierarchical output multiplexer.

The core of the design is an array of up/down LFSR

sand zero detectors. The L-CBF design is divided

into several partitions where each row of a partition

consists of an up/down LFSR and a zero detector.

Fig. 5. Architecture of L-CBF the basic cells of an

up/down LFSR: (a) the two-phase flip-flop; (b) the 2-

to-1 multiplexer; (c) XNOR gate; and (d) a bit-slice

of the embedded zero detector L-CBF accepts three

inputs and produces a single-bit output is-zero. The

input operation select specifies the type of operation:

INC, DEC, PROBE, and IDLE. The input address

specifies the address in question and the input reset is

used to initialize all LFSRs to the zero state. The

LFSRs utilize two non-overlapping phase clocks

generated internally from an external clock. We use a

hierarchical decoder for decoding the address t

minimize the energy-delay product .

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 175

The decoder consistsof a predecoding stage, a global

decoder to select the appropriate partition, and a set

of local decoders, one per partition.

Each partition has a shared local is-zero output. A

hierarchical Multiplexer collects the local is -zero

signals and provides the single-bit is-zero output. Fig.

5 also depicts the basic cells of each up/down LFSR

and zero decoder. Shown are the flip-flop used in the

shift registers, the multiplexer that controls the

direction of change (“up”/”down”), the XNOR gate,

and a bit-slice of the zero decoder. Further details on

L-CBF implementation are presented.

Multi-Porting: Some applications require

simultaneous operations from the CBF. In the

simplest implementation, the CBF can be banked to

support simultaneous accesses to different banks.

This mirrors the organization of high-performance

caches that are often banked to support multiple

accesses instead of being truly multi-ported. True

multi-porting is straightforward by selective resource

replication in case of simultaneous accesses to

different counts.

For S-CBF, we need an SRAM with multiple read

and write ports and multiple shared up/down

counters.

For L-CBF, we need to replicate the decoder, the zero

detectors, and the output multiplexer.

When multiple accesses map to the same count,

multi-portingis not straightforward. A simple solution

detects such accesses and serializes them.

Alternatively, circuitry can be added to determine the

collective effect of all accesses. For example, for two

simultaneous increment operations , the net effect is

to increase the counter by two. For S-CBF, this

circuitry can be embedded into the shared counter.

For L-CBF, the capability of shifting by multiple

cells in one cycle is required. This work does not

consider these enhancements.

V. EXPERIMENTAL RESULTS

This section compares the energy, delay, and area of

S-CBF and L-CBF. Moreover, this section compares

the analytical model estimations against simulation

results for L-CBF. We compare S-CBF and L-CBF

on a per operation basis.

Both designs are implemented using the Cadence(R)

tool set in a commercial 0.13- m fabrication

technology. We developed transistor-level

implementation and a full-custom layout for both

designs that were optimized for the energy-delay

product.

We employed Spectre for circuit simulations. This is

a vendor recommended simulator for design

validation prior to manufacturing.

The rest of this section is organized as follows. We

initially consider a 1 K-entry CBF with 15-bit counts

as this configuration is representative of the CBFs

used in previous proposals. Then, we present results

for other CBF configurations.

We compare the energy, delay and area of the two

designs for all CBF operations (updates and probes).

We study how energy and delay change as the

number of entries and the width of the counters vary.

In Section V-C, we discuss the accuracy of analytical

models.

A. Delay and Energy Per Operation

We compare implementations of a 1 K-entry, 15-bit

count per entry CBF. For S-CBF, an SRAM with a

total capacity of15 Kbits is used.

The SRAM is partitioned to minimize the energy-

delay product. For S-CBF, we do not consider the

delay and energy overhead of the shared counter

since our goal is to demonstrate that L-CBF

consumes less energy and is also faster.

To further reduce energy for probes in S-CBF, we

introduce an extra bit per entry which is updated only

when the count changes from, or to, zero. On a probe,

we only read this bit. Furthermore, we apply a

number of delay and power optimizations on S-CBF.

In detail, we implement the divided word line (DWL)

technique which adopts a two-stage hierarchical row

decoder structure.

The DWL technique improves speed and power.

Moreover, we reduce power further via pulse

operation techniques for the word-lines, the periphery

circuits and the sense amplifiers. We also use

multistage static CMOS dedecoding

and current-mode read and write operations to further

reduce power [12]. For L-CBF, we utilize 16-bit

LFSRs such that the LFSR can count at least 215

values.

Table II shows the delay in picoseconds, the energy

(static and dynamic) per operation in picojoules, and

the area in square millimetres for both L-CBF and S-

CBF. The last column reports the ratio of S-CBF over

L-CBF per metric. The two rows per category report,

© October 2018 | IJIRT | Volume 5 Issue 5 | ISSN: 2349-6002

IJIRT 147184 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 176

respectively, measurements for the update and probe

operations.

TABLE II ENERGY, DELAY, AND AREA OF S-

CBF AND L-CBF IMPLEMENTATIONS FOR A 1

K-ENTRY, 15-BIT CBF

 operation L-CBF S-CBF S-

CBF/L

-CBF

Delay(ps) INC/DEC 447.26 1670 3.7

PROBE 580.32 910.12 1.6

Energy(pj) INC/DEC 38.73 88.98 2.3

PROBE 30.36 41.02 1.4

Area(mm
2
) 0.95 0.30 0.31

For delay and energy, we report the worst case which

is measured by selecting appropriate inputs. The

delay and energy of the shared counter of S-CBF is

not included; otherwise, the actual delay and energy

of S-CBF would be higher.

As observed from Table II, L-CBF is 3.7 and 1.6

faster than S-CBF during update and probe

operations, respectively. In addition, L-CBF

consumes 2.3 or 1.4 X less energy than S-CBF for

update and probe operations, respectively. These

significant gains in speed and energy consumption

come at the expense of more area. L-CBF requires

about 3.2 more area than S-CBF.

Area is less of a concern in modern microprocessor

designs.

Disregarding the overhead (delay and energy) of the

shared counter, the measurements for S-CBF are

optimistic. Anup/down 15-bit LFSR counter has a

delay of 240 ps and energy per update of 25 FJ. If

this LFSR was used as the shared counter for S-CBF,

L-CBF would be 4.3 or 1.98 X faster than S-CBF.

VI. CONCLUSION

In this paper, we investigate physical level

implementations of CBFs and we propose L-CBF. L-

CBF is a novel implementation consisting of an array

of up/down LFSRs and zero detectors.

We compare L-CBF with S-CBF. S-CBF is the

previously assumed implementation consisting of an

SRAM array of counts and a shared counter. We

evaluate the energy, delay, and area of L-CBF and S-

CBF in a commercial fabrication technology. L-CBF

is superior to S-CBF in both delay and speed at the

expense of more area.

Comparisons demonstrate that the estimations

provided by the models are in satisfying agreement

with the simulation results.

