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Abstract- Many high-performance microprocessors 

employ cache write-through policy for performance 

improvement. However, write-through policy also 

incurs large energy overhead due to the increased 

accesses to caches at the L2 caches. To overcome this 

problem we use way tagged cache. In the exiting work, 

we present novel ideas for both cache hit and miss 

predictions. Partial tag enhanced bloom filter to reduce 

the tag comparisons of the cache hit prediction method. 

In the proposed technique enables CBFs(counting 

bloom filters)to improve upon the energy, delay, and 

complexity of various processor structure when 

compared with exiting work. This paper studies the 

energy, delay, and area characteristics of two 

implementations for CBFs using full custom layouts in a 

commercial 0.13- m fabrication technology. One 

implementation is S -CBF, other implementation is L-

CBF. Our results demonstrate that for a variety of L-

CBF organizations, the estimations by analytical models 

are within 5% and 10% of spectra simulation results. 

 

Index Terms- Computer architecture, counting bloom 

filters, Implementation, low power, microprocessors. 

 

 INTRODUCTION 

 

Multi-Level on-chip cache systems have been widely 

adopted in high-performance microprocessors. To 

keep data consistence throughout the memory 

hierarchy, write-through and write-back policies are 

commonly employed. Under the write- back policy, a 

modified cache block is copied back to its 

corresponding lower level cache only when the block 

is about to be replaced. While under the write-

through policy, all copies of a cache block are 

updated immediately after the cache block is 

modified at the current cache, even though the block 

might not be evicted. As a result, the write-through 

policy maintains identical data copies at all levels of 

the cache hierarchy throughout most of their life time 

of execution. This feature is important as CMOS 

technology is scaled into the nanometre range, where 

soft errors have emerged as a major reliability issue 

in on-chip cache systems. While enabling better 

tolerance to soft errors, the write-through policy also 

incurs large energy overhead. This is because under 

the write-through policy, caches at the lower level 

experience more accesses during write operations. 

Consider a two-level (i.e., Level-1 and Level-2) 

cache system for example. If the L1 data cache 

implements the write-back policy, a write hit in the 

L1 cache does not need to access the L2 cache. In 

contrast, if the L1 cache is write-through, then both 

L1 and L2 caches need to be accessed for every write 

operation. Obviously, the write-through policy incurs 

more write accesses in the L2 cache, which in turn 

increases the energy consumption of the cache 

system. Power dissipation is now considered as one 

of the critical issues in cache design. Studies have 

shown that on-chip caches can consume about 50% 

of the total power in high-performance 

microprocessors. 

The way-tagged cache, to improve the energy 

efficiency of write-through cache systems with 

minimal area overhead and no performance 

degradation. 

Several studies have investigated the reduction of tag 

comparisons within the L2 cache. Such studies can be 

classified into two categories based on the method 

used for reducing tag comparisons: cache hit 

prediction and cache miss prediction. 

The cache hit prediction methods typically use two-

step tag comparison. In the first step, tags are 

compared for cache ways that are likely to yield a 

cache hit. If the prediction is successful, the power 

consumption otherwise needed for comparison with 

the other tags can be saved. However, if the 
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prediction fails, tag comparisons with the remaining 

tags are performed in the next cycle, thereby resulting 

in an additional latency cycle. Because tag 

comparisons are performed even in the case of cache 

misses, the cache hit prediction methods may lead to 

high power consumption in applications with high 

cache miss rates.  

The cache miss prediction methods try to predict 

cache misses, e.g., based on the Bloom filter . If the 

prediction is correct, tag comparisons are skipped, 

thereby saving the energy consumed in tag 

comparison. Improving the prediction accuracy (e.g., 

by using a larger Bloom filter) further reduces the 

amount of energy consumed in tag comparison. In 

this paper, we propose a novel tag comparison 

method that exploits predictions of both cache hits 

and misses.  

The contributions of our work are as follows: 

1) A partial tag-enhanced Bloom filter to improve 

the energy efficiency of cache miss predictions; 

2) Hot/cold checks to improve the efficiency of 

cache hit prediction with energy-aware dynamic 

management of the hot/cold data and a 

pessimistic two-step tag comparison for cold 

data; 

3) Dynamic reordering of cache hit/miss prediction 

methods for multistep tag comparison that can 

further reduce the energy consumed in tag 

comparison by adapting to dynamically changing 

cache access behavior; 

4) Performance guarantees to ensure a tradeoff 

between cache energy consumption and 

additional latency overhead, especially in the 

case of latency-critical programs. 

This work focuses exclusively on the second factor as 

it investigates implementations of a CBF that 

improve its energy and delay characteristics. A key 

contribution of this work is the introduction of   

L-CBF. L-CBF is an energy- and delay-efficient 

implementation that utilizes an array of up/down 

linear feedbackshift registers (LFSRs) and local zero 

detectors. Previous work assumes a straightforward 

SRAM-based implementation that we will refer to it 

as S-CBF. 

The significant contributions of this work are as 

follows. 

1) It proposes L-CBF, a novel, energy- and speed-

efficient implementation for CBFs. 

2) It compares the energy, delay, and area of two 

CBF implementations, L-CBF and S-CBF, using 

3) their circuit-level implementations and full-

custom layouts in 0.13- m fabrication 

technology.  

4) It presents analytical delay and energy models 

for L-CBF and compares the model estimations 

against simulation results. 

 

II. PRELIMINARIES AND OUR MOTIVATIONS 

 

A. Bloom Filter 

The Bloom filter is utilized to check the approximate 

non-member ship of a set. When applied to reducing 

tag comparisons, each cache way is equipped with a 

Bloom filter. A query to the Bloom filter (e.g., “is 

address 0×100 in the cache way?”) gives either of 

two results: negative (definite nonexistence) and 

positive (likely existence). Note that a negative result 

from the Bloom filter guarantees nonexistence,i.e., a 

cache way miss. 

Preliminaries and Our Motivations cache way is 

accessed, first the Bloom filter per cache way is 

looked up. If the Bloom filter indicates nonexistence, 

then tag comparison for the cache way is avoided, 

thereby saving the energy that would have been 

consumed in tag comparison. Both: 1) the smaller 

energy consumed to access the Bloom filter rather 

than the tag; and 

 2) the high prediction accuracy 

for cache way misses reduce the energy consumed in 

tag comparison. For instance, in the case of a cache 

way miss, using the Bloom filter produces a net 

energy gain as long as the following relationship 

holds 

EB < p×ET 

WhereEB and ET represent the energy consumed 

while accessing the Bloom filter and the tag structure, 

respectively, and pis the cache miss prediction 

accuracy of the Bloom filter. 

 

III. CBFS 

 

This section reviews CBFs and their characteristics. 

Additionally, it discusses the previously assumed 

implementation for the CBFs, which has not been 

investigated at the physical level.  
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Fig. 1. CBF as a black box 

A. Introduction to CBFs: 

1) CBF as a Black Box:As shown in Fig. 1, a CBF is 

conceptually an array of counts indexed via a hash 

function of the element under membership test. A 

CBF has three operations:1) Increment count (INC); 

2) Decrement count (DEC); and 

3) Test if the count is zero (PROBE). The first two 

operations increment or decrement the corresponding 

count by one, and the third one checks if the count is 

zero and returns true or false (single-bit output). We 

will refer to the first two operations as updates  and to 

the third one as a probe. A CBF is characterized by 

its number of entries and the width of the count per 

entry. 

2) CBF Characteristics: Membership tests using 

CBFs are performed by probe operations. In response 

to a membership test, a CBF provides one of the 

following two answers: 1) “definite no,” indicating 

that the element is definitely not a member of the 

large set and 

 2) “I don’t know,” implying that the CBF cannot 

assist in a membership test, and the large set must be 

searched. The CBF is capable of producing the 

desired answer to a membership test much faster and 

saves power on two conditions. First, accessing the 

CBF is significantly faster and requires  much less 

energy than accessing the large set. Second, most 

membership tests are serviced by the CBF. The latter 

is investigated by studying the application behavior. 

For instance, when CBF is exploited as a miss 

predictor, previous work shows that more than 95% 

of the accesses to the cache tag array are serviced by 

the CBF.  

The CBF uses an imprecise representation of the 

large set to be searched. Ideally, in the CBF, a 

separate entry would exist for every element of the 

set. In this case, the CBF would be capable of 

precisely representing any set. However, this would 

require a prohibitively large array negating any 

benefits. In practice, the CBF is a small array and the 

element addresses are hashed onto this small array. 

Because of hashing, multiple addresses may map 

onto the same array entry.  

Hence, the CBF constitutes an imprecise 

representation of the content of the large set and 

keeps a superset of the existing elements. This 

impreciseness is the reason of the “I don’t know” 

answers by the CBF. To reduce the frequency of such 

answers, and hence improving accuracy, multiple 

CBFs with different hash functions can be used. 

Fig. 2. S-CBF architecture: an SRAM holds the CBF 

counts; INC/DEC: read modify-write sequences; 

PROBE: read-compare sequence. 

An “I don’t know” answer to a membership test 

incurs power and delay penalty since in case of such 

an answer, the large set must be checked in addition 

to the CBF. The delay penalty occurs if the CBF and 

the large set accesses are serialized. This delay 

penalty can be avoided if we probe the CBF and the 

large set in parallel; in this case, power benefits will 

be possible only if the in-progress access to the large 

set can be terminated once the CBF provides a 

definite answer. These overheads do not concern us 

as often CBF can provide the definite answer.  

3) CBF Functionality: The CBF operates as follows. 

Initially, all counts are set to zero and the large set is 

empty. When an element is inserted into, or deleted 

from the large set, the corresponding CBF count is 

incremented or decremented by one. 

To test whether an element currently exists in the 

large set, the corresponding CBF count is inspected. 

If the count is zero, the element is definitely not in 

the large set; otherwise, CBF cannot assist and the 

large set must be searched. 

 

B. S-CBF: SRAM-Based CBF Implementation: 

Previous work assumes a CBF implementation 

consisting of an SRAM array of counts, a shared 

up/down counter, a zero comparator, and a small 
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controller [2]. We will refer to this implementation as 

S-CBF. The architecture of S-CBF is depicted in Fig. 

2.  

Updates are implemented as read-modify-write 

sequences as follows: 

1) The count is read from the SRAM; 2) It is adjusted 

using the counter; and 3)It is written back to the 

SRAM. The probe operation is implemented as a read 

from the SRAM, and a compare with zero using the 

zero-comparator. A small controller coordinates this 

sequence of actions. An optimization was proposed 

to speedup probe operations and to reduce their 

power. Specifically, an extra bit Z is added to each 

count. When the count is nonzero the Z is set to false 

and when the count is zero, the Z is set to true. 

Probes can now simply inspect.The Z bits can be 

implemented as a separate SRAM structure which is 

faster and requires much less power. This type of 

optimization iscompatible with bothS-CBF and L-

CBF architectures. 

 

IV. L-CBF: A NOVEL LFS BASED CBF 

IMPLEMENTATION 

 

Demonstrates quantitatively that much of the energy 

in S-CBF is consumed on the SRAM’s bit lines and  

word lines. Additionally, in S-CBF, both delay and 

energy suffer as updates require two SRAM accesses 

per operation. 

The shared counter may increase the energy and the 

delay further. 

We could avoid accesses over long bit lines by 

building an array of up/down counters with local zero 

detectors. In this way, CBF operations would be 

localized and there would be no need to read/write 

values over long bit lines. L-CBF is such a design. 

For the CBF, the actual count values are not 

important and we only care whether a count is “zero” 

or “nonzero” .Hence, any counter that provides a 

deterministic up/down sequence can be a choice of 

counter for the CBF.  

L-CBF consists of an array of up/down LFSRs with 

embedded zero detectors. L-CBF employs up/down 

LFSRs that offer a better delay, power, and 

complexity trade off than other synchronous up/down 

counters with the same count sequence length .As 

demonstrates,  

L-CBF significantly reduces energy and delay 

compared to S-CBF at the cost of more area. The 

increase in area though is a minor concern in modern 

processor designs given the abundance of on-chip 

resources and the very small area of the CBF 

compared to most other processor structures(e.g., 

caches and branch predictors).The rest of this section 

reviews up/down (reversible) LFSRs and discusses 

the architecture of L-CBF. 

 

A. LFSRs 

A maximum-length -bit LFSR sequences through 2n-

1states. It goes through all possible code 

permutations except one. The LFSR consists of a 

shift register and a few embedded XNOR gates fed 

by a feedback loop. Each LFSR has the following 

defining parameters: 

 width, or size, of the LFSR (it is equal to the 

number of bits  in the shift register); 

 number and positions of taps (taps are special 

locations in 

 the LFSR that have a connection with the 

feedback loop); 

 initial state of the LFSR which can be any value 

except one (all ones for XNOR feedback). 

Without the loss of generality, we restrict our 

attention to the Galois implementation of LFSRs. 

State transitions proceed as follows. The non-tapped 

bits are shifted from the previous  position. The 

tapped bits are XNORed with the feedback loop 

before being shifted to the next position. The 

combination of the taps and their locations can be 

represented by a polynomial. 

Fig. 3 shows an 8-bit maximum-length GaloisLFSR, 

its taps, and polynomial. By appropriately selecting 

the tap locations it is always possible to build a 

maximum-length LFSR of any width with either two 

or four taps. Additionally, ignoring wire length 

delays and the fan-out of the feedback path, the 

delays of the maximum-length LFSR is independent 

of its width (size) .Delay increases only slightly with 

size, primarily due to increased capacitance on the 

control lines. 

 
Fig. 3.Eight-bit maximum-length LFSR 
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Fig. 4. Three-bit maximum-length up/down LFSR. 

1) Up/Down LFSRs: 

The tap locations for a maximum-length, 

unidirectional n -bit LFSR can be represented by a 

primitive polynomial g(x) as depicted in (1) 

g(x)=∑ni=0Ci ×Xi(C0=Cn=1)--------(1) 

In (1),Xi corresponds to the output of theith bit of the 

shift register and the constants Ci are either 0 (no tap) 

or 1 (tap). 

Given g(x), a primitive polynomial h(x)  for an LFSR 

generates the reverse sequence as depicted in (2)  

h(x)= ∑ni=0Ci ×X n-i(C0=Cn=1)-----(2) 

The superposition of the two LFSRs  (the original and 

its reverse) forms a reversible “up/down” LFSR. The 

up/down LFSR consists of a shift register similar to 

the one used for the unidirectional lLFSR; a 2-to-1 

multiplexer per bit to control the shift direction; and 

twice as many XNOR gates as the unidirectional 

LFSR. Fig. 4 shows the construction of a 3-bit 

maximum-length up/down LFSR. It also depicts the 

polynomials and count sequence of both up and down 

directions. In general, it is possible to construct a 

maximum-length up/down LFSR of any width with 

two or six XNOR gates (i.e., four or eight taps. 

2) Comparison With Other Up/Down Counters: In 

this section, we compare LFSR counters with other 

synchronous up/down counters that could be a choice 

of counter for CBFs. We restrict our discussion to 

synchronous up/down counters of Width n with a 

count sequence of at least 2n-1states.The simplest 

type of synchronous counter is the binary Modulo- 

2nn -bit counter. For this counter, speed and area are 

conflicting qualities due to carry propagation. For 

example, the -bit ripple-carry synchronous counter, 

one of the simplest counters, has a delay of  O(n). 

Counters with a Manchester carry-chain, carry-look 

ahead and binary tree carry propagation have delay of 

O(log n)  though at the cost of more energy and area. 

In applications where the count sequence is 

unimportant [e.g., ointers of circular first-inputs–

first-outputs (FIFOs) and frequency dividers], an 

LFSR counter offers a speed-power-area efficient 

solution. The delay of an LFSR is  nearly independent 

of its size. Specifically, the LFSR delay consists of a 

flip-flop delay, an XNOR gate delay, and a feedback 

loop delay. The feedback loop delay is the 

propagation delay of the last flip-flop output to the 

input of the furthest XNOR gate from the last flip-

flop. Ignoring secondary effects on the feedback path, 

the delay of an n-bit maximum length LFSRis O(1) 

and independent of the counter size . These 

characteristics make LFSRs a suitable counter choice 

for CBFs. 

 

B. L-CBF Implementation 

Fig. 5 depicts the high-level organization of L-CBF. 

L-CBF includes a hierarchical decoder and a 

hierarchical output multiplexer. 

The core of the design is an array of up/down LFSR 

sand zero detectors. The L-CBF design is divided 

into several partitions where each row of a partition 

consists of an up/down LFSR and a zero detector. 

Fig. 5. Architecture of L-CBF the basic cells of an 

up/down LFSR: (a) the two-phase flip-flop; (b) the 2-

to-1 multiplexer; (c) XNOR gate; and (d) a bit-slice 

of the embedded zero detector L-CBF accepts three 

inputs and produces a single-bit output is-zero. The 

input operation select specifies the type of operation: 

INC, DEC, PROBE, and IDLE. The input address 

specifies the address in question and the input reset is 

used to initialize all LFSRs to the zero state. The 

LFSRs utilize two non-overlapping phase clocks 

generated internally from an external clock. We use a 

hierarchical decoder for decoding the address t  

minimize the energy-delay product . 
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The decoder consistsof a predecoding stage, a global 

decoder to select the appropriate partition, and a set 

of local decoders, one per partition.  

Each partition has a shared local is-zero output. A 

hierarchical Multiplexer collects the local is -zero 

signals and provides the single-bit is-zero output. Fig. 

5 also depicts the basic cells of each up/down LFSR 

and zero decoder. Shown are the flip-flop used in the 

shift registers, the multiplexer that controls the 

direction of change (“up”/”down”), the XNOR gate, 

and a bit-slice of the zero decoder. Further details on 

L-CBF implementation are presented. 

Multi-Porting: Some applications require 

simultaneous operations from the CBF. In the 

simplest implementation, the CBF can be banked to 

support simultaneous accesses to different banks. 

This mirrors the organization of high-performance 

caches that are often banked to support multiple 

accesses instead of being truly multi-ported. True 

multi-porting is straightforward by selective resource 

replication in case of simultaneous accesses to 

different counts.  

For S-CBF, we need an SRAM with multiple read 

and write ports and multiple shared up/down 

counters. 

For L-CBF, we need to replicate the decoder, the zero 

detectors, and the output multiplexer. 

When multiple accesses map to the same count, 

multi-portingis not straightforward. A simple solution 

detects such accesses and serializes them. 

Alternatively, circuitry can be added to determine the 

collective effect of all accesses. For example, for two 

simultaneous increment operations , the net effect is 

to increase the counter by two. For S-CBF, this 

circuitry can be embedded into the shared counter. 

For L-CBF, the capability of shifting by multiple 

cells in one cycle is required. This work does not 

consider these enhancements. 

 

V. EXPERIMENTAL RESULTS 

 

This section compares the energy, delay, and area of 

S-CBF and L-CBF. Moreover, this section compares 

the analytical model estimations against simulation 

results for L-CBF. We compare S-CBF and L-CBF 

on a per operation basis. 

Both designs are implemented using the Cadence(R) 

tool set in a commercial 0.13- m fabrication 

technology. We developed transistor-level 

implementation and a full-custom layout for both 

designs that were optimized for the energy-delay 

product. 

We employed Spectre for circuit simulations. This is 

a vendor recommended simulator for design 

validation prior to manufacturing. 

The rest of this section is organized as follows. We 

initially consider a 1 K-entry CBF with 15-bit counts 

as this configuration is  representative of the CBFs 

used in previous proposals. Then, we present results 

for other CBF configurations. 

We compare the energy, delay and area of the two 

designs for all CBF operations (updates and probes). 

We study how energy and delay change as the 

number of entries and the width of the counters vary. 

In Section V-C, we discuss the accuracy of analytical 

models. 

 

A. Delay and Energy Per Operation 

We compare implementations of a 1 K-entry, 15-bit 

count per entry CBF. For S-CBF, an SRAM with a 

total capacity of15 Kbits is used. 

The SRAM is partitioned to minimize the energy-

delay product. For S-CBF, we do not consider the 

delay and energy overhead of the shared counter 

since our goal is to demonstrate that L-CBF 

consumes less energy and is also faster.  

To further reduce energy for probes in S-CBF, we 

introduce an extra bit per entry which is updated only 

when the count changes from, or to, zero. On a probe, 

we only read this bit. Furthermore, we apply a 

number of delay and power optimizations on S-CBF. 

In detail, we implement the divided word line (DWL) 

technique which adopts a two-stage hierarchical row 

decoder structure. 

The DWL technique improves speed and power. 

Moreover, we reduce power further via pulse 

operation techniques for the word-lines, the periphery 

circuits and the sense amplifiers. We also use 

multistage static CMOS dedecoding 

and current-mode read and write operations to further 

reduce power [12]. For L-CBF, we utilize 16-bit 

LFSRs such that the LFSR can count at least 215 

values. 

Table II shows the delay in picoseconds, the energy 

(static and dynamic) per operation in picojoules, and 

the area in square millimetres for both L-CBF and S-

CBF. The last column reports  the ratio of S-CBF over 

L-CBF per metric. The two rows per category report, 
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respectively, measurements for the update and probe 

operations. 

 

TABLE II ENERGY, DELAY, AND AREA OF S-

CBF AND L-CBF IMPLEMENTATIONS FOR A 1 

K-ENTRY, 15-BIT CBF 

 operation L-CBF S-CBF S-

CBF/L

-CBF 

Delay(ps) INC/DEC 447.26 1670 3.7 

PROBE 580.32 910.12 1.6 

Energy(pj) INC/DEC 38.73 88.98 2.3 

PROBE 30.36 41.02 1.4 

Area(mm
2
)  0.95 0.30 0.31 

For delay and energy, we report the worst case which 

is measured by selecting appropriate inputs. The 

delay and energy of the shared counter of S-CBF is 

not included; otherwise, the actual delay and energy 

of S-CBF would be higher. 

As observed from Table II, L-CBF is 3.7 and 1.6 

faster than S-CBF during update and probe 

operations, respectively. In addition, L-CBF 

consumes 2.3 or 1.4 X less energy than S-CBF for 

update and probe operations, respectively. These 

significant gains in speed and energy consumption 

come at the expense of more area. L-CBF requires 

about 3.2 more area than S-CBF. 

Area is less of a concern in modern microprocessor 

designs. 

Disregarding the overhead (delay and energy) of the 

shared counter, the measurements for S-CBF are 

optimistic. Anup/down 15-bit LFSR counter has a 

delay of 240 ps and energy per update of 25 FJ. If 

this LFSR was used as the shared counter for S-CBF, 

L-CBF would be 4.3 or 1.98 X faster than S-CBF. 

 

VI. CONCLUSION 

 

In this paper, we investigate physical level 

implementations of CBFs and we propose L-CBF. L-

CBF is a novel implementation consisting of an array 

of up/down LFSRs and zero detectors. 

We compare L-CBF with S-CBF. S-CBF is the 

previously assumed implementation consisting of an 

SRAM array of counts and a shared counter. We 

evaluate the energy, delay, and area of L-CBF and S-

CBF in a commercial fabrication technology. L-CBF 

is superior to S-CBF in both delay and speed at the 

expense of more area. 

Comparisons demonstrate that the estimations 

provided by the models are in satisfying agreement 

with the simulation results. 

 


