
© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 305

Securing Mining of Sequence Patterns from Redistributed

Data Set Using Association Rule Mining

Dr.K.Bhargavi
1
, Dr.A.Ramachandra Reddy

2
, Dr.D.Kiran kumar

3
, Mr.V.NarsingRao

4

1,2,3,4
Sphoorthy Engineering College

Abstract- There has been significant recent interest in

the paradigm of data mining as-a-service. A company

(data owner) lacking in proficiency or computational

resources can outsource its mining needs to a third

party service provider (server). In spite of this, both the

items and the association rules of the outsourced

database are considered private property of the

company (data owner). To protect corporate or

individuals privacy, the data owner transforms its data

and ships it to the server, sends mining queries to the

server, and recovers the true patterns from the

extracted patterns received from the server. In this

paper, experiment evaluation of outsourcing the

association rule mining task within a corporate privacy-

preserving framework. Proposed an attack model based

on background knowledge and devise a approach for

privacy preserving outsourced mining.

Represented approach ensures that each transformed

item is indistinguishable with respect to the attacker’s

background knowledge, from at least k−1 other

transformed items. These comprehensive experiments

on a very large and real transaction database

demonstrate that these techniques are effective,

scalable, and protect privacy.

Index Terms- Association Rule Mining, Privacy

Preserving Outsourcing.

I. INTRODUCTION

The problem of outsourcing the association rule

mining task within a corporate privacy preserving

framework is difficult. A construction body of work

has been done on privacy preserving data mining

(PPDM) in a variety of framework. A common

attribute of most of the earlier studied frameworks is

that the patterns mined from the data (which may be

unclear, encrypted, anonymized or transformed) are

intended to be shared with parties other than the data

owner. The key peculiarity between such bodies of

work and problem is that, in the latter, both the

underlying data and the mined results are not

intended for sharing and must remain private to the

data owner. For this adopted a traditional frequency

based attack model in which the server knows the

exact set of items in the owner’s data and

additionally, it also knows the exact support of every

item in the original data. Wong et al. was one of the

near the beginning works on defending against the

frequency based attack in the data mining

outsourcing scenario. Wong et al. introduced the idea

of using fake items to guard against the frequency

based attack; however, it was lacking a formal

theoretical analysis of privacy guarantees, and has

been shown to be flawed very recently in , where a

method for breaking the proposed encryption is

given. Therefore, in Giannotti et al. previous and

preliminary work, Giannotti et al. proposed to solve

this problem by using k-privacy, i.e., each item in the

outsourced dataset should be indistinguishable from

at least k − 1 items regarding their support. In this

paper, the goal is to devise an encryption approach

which enables formal privacy guarantees to be

proved, and to validate this model over large-scale

real-life transaction databases (TDB). The

architecture behind this model. The client/owner

encrypts its data using an encrypt/decrypt (E/D)

module, which can be essentially treated as a black

box from its perspective. This model is responsible

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 306

for transforming the input data into an encrypted

database. The server conducts data mining and sends

the (encrypted) patterns to the owner. This encryption

approach has the property that the returned supports

are not true supports. The E/D module recovers the

true identity of the returned patterns as well their true

supports. It is trivial to show that if the data are

encrypted using 1–1 substitution ciphers (without

using fake transactions), many ciphers and hence the

transactions and patterns can be broken by the server

with a high probability by launching the frequency-

based attack. Thus, the major focus of this paper is to

devise encryption approaches such that formal

privacy guarantees can be proven against attacks

conducted by the server using background

knowledge, while keeping the resource requirements

under control. First, formally defining an attack

model for the adversary and make the background

knowledge the adversary may possess precise. The

notion of privacy requires that, for each cipher-text

item, there are at least k−1 distinct cipher items that

are indistinguishable from the item regarding their

supports. Secondly, developed an encryption

approach, called Rob Fruga,l that the E/D module can

employ to transform client data before it is shipped to

the server. Third, to allowing the E/D module to

recover the true patterns and their correct support, it

is proposed that it creates and keeps a compact

structure, called synopsis. For this providing the E/D

module with an efficient strategy for incrementally

maintaining the synopsis against updates in the form

of appends. Also conducted a formal analysis based

on this attack model and prove that the probability

that an individual item, a transaction, or a pattern can

be broken by the server can always be controlled to

be below a threshold chosen by the owner, by setting

the anonymity threshold k. This result holds

unconditionally for the Rob Frugal approach. Then

conduct experimental analysis of this schema using a

large real dataset from the Coop store chain in Italy.

The result shows that these encryption schemas is

effective, scalable, and achieve the desired level of

privacy. Providing here the key theoretical results

which concern the complexity and privacy guarantees

the privacy. Also discusses the results of a

comprehensive set of experiments conducted using

real and synthetic datasets.

II. MODEL PRIVACY

Consider denote the original TDB that the owner has.

to protect individual identification of items, when the

owner applies an encryption function to and

transforms it to ,the encrypted database. Refer items

in as plain items and items in as cipher items. The

term item shall mean plain item by default. The

notions of plain item sets, plain transactions, plain

patterns, and their cipher counterparts are defined in

the obvious way. use to denote the set of plain items

and to refer to the set of cipher items.

A) Adversary Knowledge: The server or an

opponent might gains access to it may possess some

prior or background knowledge using which

opponent can conduct attacks on the encrypted

database. Generically refer to any of these agents as

an attacker. Here adopting a conventional model and

assuming that the attacker knows exactly the set of

(plain) items in the original and their true supports in,

i.e., , . The attacker may have access to similar data

from a competing organization, may read published

reports, etc. In reality, the opponent may be having

approximate knowledge of the supports or may know

the exact/approximate supports of a subset of items in

D. However, to make the analysis robust, one can

adopt the conventional assumption that he knows the

exact support of every item. Remember, that as the

opponent has access to the encrypted database D*, he

also knows the supports, where is the set of cipher

items in the encrypted database D*.

1)Replacing each plain item in D by a 1–1

substitution cipher and

2)Adding fake transactions to the database.

Consider, that the opponent knows this and thus he

knows that | | = |I|. Essentially, compared to,

adversary knowledge model corresponds to a (100%,

0%) knowledge model, confined to single items.

Assume that the opponent neither has the knowledge

of plaintext transactions nor the frequency of item

sets and the distribution of transaction lengths in the

original database.

b)Attack Model: By assuming that the service

provider (who can be an opponent) is semi-honest in

the sense that although he does not know the details

of encryption algorithm, opponent can be curious and

he can use his prior knowledge to make assumption

on the encrypted transactions. Also considered, that

the opponent always returns (encrypted) item sets

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 307

together with their exact support. The data owner

considers the true identity of:

1) Every cipher item;

2) Every cipher transaction;

3) Every cipher frequent pattern;

As intellectual property which should be protected.

The following attack model will considers all these.

Refer to prob(e) and prob(E) as crack probabilities.

From the point of view of the owner, minimizing the

probabilities of crack is desirable. Intuitively,

Cand(e) and Cand(E) should be as large as possible.

Ideally, Cand(e) should be the whole set of plaintext

items. This can be achieved if one can bring each

cipher item to the same level of support, e.g., to the

support of the most frequent item in D.

Unfortunately, this option is impractical, as it will

lead to a large size of the fake transactions, which in

turn leads to a dramatic explosion of the frequent

patterns and making pattern mining at the server side

computationally prohibitive.

This motivates us of relaxing the equal-support

constraint and introducing item k-anonymity as a

compromise.

c) Problem Statement: To compute the privacy

guarantees of an encrypted database, Here define the

following notion.

Definition 2: Given a database D and its encrypted

version D*, say D* is k-private if:

Problem studied: Given a plain database D, construct

a k-private cipher database D* by using substitution

ciphers and adding fake transactions such that from

the set of frequent cipher patterns and their support in

D* sent to the owner by the server, the owner can

reconstruct the true frequent patterns of D and their

exact support. Additionally, like to minimize the

space and time incurred by the owner in the process

and the mining overhead incurred by the server.

III. ENCRYPTION/DECRYPTION APPROACH

A. Encryption: In this section, introducing the

encryption approach, called Rob Frugal, which

transforms a TDB D into its encrypted version D*.

This approach is parametric with respect to k > 0 and

consists of three main steps:

1)Using 1–1 substitution ciphers for each plain item;

2)Using a specific item k-grouping method; and

3)Using a method for adding new fake transactions

for achieving k-privacy.

The constructed fake transactions are added to D

(once items are replaced by cipher items) to form D

*, and transmitted to the server. A record of the fake

transactions, i.e., , is stored by the E/D module in the

form of a compact synopsis, as discussed in previous

sections.

B. Decryption: When the client requests the

execution of a pattern mining query to the server,

specifying a minimum support threshold σ, the server

returns the computed frequent patterns from D*.

Clearly, for every item set S and its corresponding

cipher item set E, have that ≤ . For each cipher

pattern E returned by the server together with, the

E/D module recovers the corresponding plain pattern

S. It needs to reconstruct the exact support of S in D

and decide on this basis if S is a frequent pattern. To

achieve this goal, the E/D module adjusts the support

of E by removing the effect of the fake transactions

(E)., this follows from the fact that support of an item

set is additive over a disjoint union of transaction

sets. Finally, the pattern S with adjusted support is

kept in the output if ≥ σ. The calculation of (E) is

performed by the E/D module using the synopsis of

the fake transactions in D * \D.

The proposed encryption/decryption approach is a

viable solution for privacy-preserving pattern mining

over outsourced TDB, provided that a correct and

efficient implementation exists. On the efficiency

side, it is not practical to store the support (E) for

every cipher pattern. In order to realize the

encryption approach efficiently, need to address the

following technical issues.

1) How do cluster items into groups of ?

2) How do create the needed fake transactions?

3) How is the synopsis represented and stored?

C. Grouping Items for k-Privacy

Given the items support table, several strategies can

be adopted to cluster the items into groups of size k.

Start from a simple grouping method called Frugal.

By assuming the item support table is sorted in

descending order of support and refer to cipher items

in this order as , etc.

Definition 3: The Frugal method consists of grouping

together cipher items into groups of k adjacent items

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 308

in the item support table in decreasing order of

support, starting from the most frequent item .

Assume . . . is the list of cipher items in descending

order of support (with respect to D), the groups

created by Frugal are {e1, . . . , }, {, . . . , }, and so

on. The last group, is less than k in size, is merged

with its previous group. By denoted the grouping

obtained using the above definition as G frug. For

example, consider the example TDB and its

associated (cipher) item support shown in Fig. 2. For

k = 2, has two groups: {} and { , , }. This

corresponds to the partitioning groups shown in

Table I(a). Thus, in D *,the support of will be

brought to that of ; and the support of and brought to

that of . Given the fact that the support of the items

strictly decreases monotonically,

Frugal grouping is optimal among all the groupings

with the item support table sorted in descending order

of support. This means, it minimizes ||G||, the size of

the fake transactions added, and hence the size ||D*||.

But is Frugal a robust grouping, i.e., will it guarantee

that itemsets (or transactions) cannot be cracked with

a probability higher than k ? The answer is no, in

general. To see this point, consider the item support

table in Table I: the first group created by Frugal for

k = 2, {} [see Table I(a)] is supported in D, because

occur together in a transaction of D. Therefore, there

only exists one itemset candidate of {e2, e4}, i.e., the

privacy guarantee is 1-privacy.To fix the privacy

vulnerabilities of Frugal, introduce the RobFrugal

grouping method, which modifies Frugal by requiring

that no group is a supported itemset in D.

Definition 4: Given a TDB D and its Frugal grouping

= , the grouping method RobFrugal consists in

modifying the groups of Gfrug by repeating the

following operations, until no group of items is

supported in D:

1)select the smallest such that find the most frequent

item such that, for the least frequent item i of have:

swap with in the grouping.

For example, given the item support table in Fig. 2,

the grouping illustrated in Table I(b), obtained by

exchanging e4 and e5 in the two groups of Frugal, is

now robust: none of the two groups, considered as

itemsets, is supported by any transaction in D. The

aim of Step 2 in Definition 4 is to obtain a robust

grouping while maintaining as small as possible the

number of fake transactions that are added to achieve

k-privacy. In particular, It will show the information

about fake transactions can be maintained by the data

owner using a compact synopsis. This step is used to

ensure the synopsis is as small as possible.

The key property of Rob Frugal is that, by

construction, it is a robust grouping for any input

TDB D. It is immediate to note that if the support in

D of each group of the initial grouping Gfrug is 0,

then RobFrugal produces a robust and optimal

grouping, where optimal means that it minimizes the

number of the fake transactions that are created by

this encryption approach. On the other hand, it should

be noted that a grouping according to Rob Frugal

may not exist, depending on the extent of density in

the TDB. For example, in a TDB where each pair of

items occurs at least once together, Rob Frugal will

not find a grouping for k = 2. In this case, a simple

solution is to keep increasing the value of k until a

Rob Frugal grouping approach exists. The intuition is

that as k gets larger it is less likely that there is a real

transaction containing all items in a group. However,

with a large k, the number of fake transactions

increases. This affects storage and processing at the

server side although the data owner can always

maintain information about fake transactions using a

compact synopsis of size n being the number of

items. In practice, It has been found that even for

small values of k = 10 to 50, a Rob Frugal grouping

approach does exist. This was the case in all these

experiments with real transaction data. In the Rob

Frugal encryption approach, the output of grouping

can be represented as the noise table. It extends the

item support table with an extra column “Noise”

indicating, for each cipher item e, the difference

among the support of the most frequent cipher item in

e’s group and the support of e itself, as reported in

the item support table. Denoted the noise of a cipher

item e as N(e). Continuing the example, the noise

table obtained with Rob Frugal is reported in Table

II(a). The noise table represents the tool for

generating the fake transactions to be added to D to

obtain D*.

IV. CONSTRUCTING FAKE TRANSACTIONS

Given a noise table specifying the noise N(e) needed

for each cipher item e, for this the fake transactions

generated as follows. First, it drop the rows with zero

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 309

noise, corresponding to the most frequent items of

each group or to other items with support equal to the

maximum support of a group. Then the remaining

rows are sorted in descending order of noise. Let , . . .

, be the obtained ordering of (remaining) cipher

items, with associated noise N(), . . . ,N(). The

following fake transactions are generated:

1) N() − N() instances of the transaction {};

2) N() − N() instances of the transaction {, };

3) . . . ;

4) N (−1) − N () instances of the transaction {, . . . , };

5) N() instances of the transaction {, . . . , }.

Suppose cipher items of nonzero noise in Table II(a).

The following two fake transactions are generated:

two instances of the transaction {} and one instance

of the transaction {}. Note that even though the

attacker may know the details of the construction

method, he/she is not able to distinguish these fake

transactions from the true ones, since the attacker

does not have any background knowledge of

frequency of item sets or of original transaction

length distribution. It can be shown that this method

yields a minimum number of different types of fake

transactions that equal the number of cipher items

with distinct noise. This observation yields a compact

synopsis for the client of the introduced fake

transactions. The purpose of using a compact

synopsis is to reduce the storage overhead at the side

of the data owner who may not be equipped with

sufficient computational resources and storage, which

is common in the outsourcing data model. In order to

implement the synopsis efficiently, need to use a hash

table generated with a minimal perfect hash function

[16]. Minimal perfect hash functions are widely used

for memory efficient storage and fast retrieval of

items from static sets. A minimal perfect hash

function is a perfect hash function that maps n keys

to n consecutive integers, usually. Hence, h is a

minimal perfect hash function over a set S if and only

if implies and there exists an integer p such that the

range of h is . A minimal perfect hash function h is

order-preserving if for any keys j and i, j < i implies

h(j) < h(i). In this approach, the items of the noise

table with N() > 0 are the keys of the minimal perfect

hash function. Given function h computes an integer

in denoting the position of the hash table storing the

triple of values _, timesi, occi, where timesi

represents the number of times that the fake

transaction {e1, e2, . . . , }occurs in the set of fake

transactions, and occi is the number of times that ei

occurs altogether in the future fake transactions after

the transaction {, , . . . , }. Given a noise table with m

items with non null noise, this approach generates

hash tables for the group of items. In general, the ith

entry of a hash table HT containing the item ei has =

N() − N(), =, where g is the number of items in the

current group. Note that each hash table HT

represents concisely the fake transactions involving

all and only the items in a group of g ≤ items. The

hash tables for the items of nonzero noise in Table

II(a) are shown in Table II(b). Finally, use a (second-

level) ordinary hash function H to map each item e to

the hash table HT containing e. Note that after the

data owner outsources the encrypted database

(including the fake transactions), he/she does not

need to maintain the fake transactions in its own

storage .Instead the data owner only has to maintain a

compact synopsis, which stores all the information

needed on the fake transactions, for later recovery of

real supports of item sets. The size of the synopsis is

linear in the number of items and is much smaller

than that of the fake transactions.

With the above data structure, one can define the

function RS that allows an efficient computation of

the real support of a pattern E = {, , . . . , }with fake

support s as follows: where: i) is the item in E such

that for 1 ≤ j ≤ n, have h(ej) ≤ h(), and ii) HT = H()

is the hash table associated by H to any item ei of E.

For example, in Table I(b), for = {}, , whereas for = {

, }, , where is the fake support of . This is exactly

right since is fakely added three times while is fakely

added two times.

V. EXPERIMENTS

In this section, presenting report on experimented

empirical evaluation to assess the

encryption/decryption overhead and the overhead at

the server side incurred by the proposed schema.

A. Datasets: For analysis purpose experimented on a

large real-world database. The real world database is

donated to us by Coop, a cooperative of consumers

that is today the largest supermarket chain in India.

Selected the transactions occurring during four

periods of time in a subset of Coop stores, creating in

this way four different databases with varying

number of transactions: from 100k to 300k

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 310

transactions. In all the datasets the transactions

involve 15713 different products grouped into 366

marketing categories. Transactions are itemsets, i.e.,

no product occurs twice in the same transaction.

Assume two distinct kinds of TDBs:

1) Product-level Coop TDBs, denoted by

Coop-Prod, where items correspond to products, and

2) Category level Coop TDBs that is denote by

CoopCat, where items correspond to the category of

the products in the original transactions. In these

datasets, = 188 for CoopProd, while = 90 for

CoopCat. Also, the two kind of TDBs exhibit very

different density properties. The number of frequent

patterns found in CoopCat tends to explode for

higher support thresholds, compared to CoopProd.

Also experimented with this algorithms for both

CoopProd and CoopCat.

B. Experimental Evaluation: Implemented Rob

Frugal encryption & decryption approach in Java. All

experiments were performed on an intel Core2 Duo

processor with a 2.66 GHz CPU and 3GB RAM over

a Win 7 platform. Adopted the a priori

implementation by Christian Borgelt,2 written in C

and one of the most highly optimized

implementations.

VI. ENCRYPTION OVERHEAD

First assessed the total time needed by the ED

module to encrypt the database (grouping, synopsis

construction, creation of fake transactions): timings

are reported in Fig. 3 for CoopProd and CoopCat, for

different values of k and different number of

transactions. The results show that the encryption

time is always small; it is under 1 s for the biggest

CoopProd TDB, and below 0.8 s for the biggest

CoopCat TDB. Indeed, it is always less than the time

of a single mining query, which is at least 1 s by

Apriori, as shown in Fig. 4(d). Therefore, when there

are multiple mining queries, which is always the case

for the outsourcing system; the encryption overhead

of this approach is negligible compared with the cost

of mining. It is worth noting that these experiments

provide empirical evidence that the theoretical

complexity upper bound of O(n2) is indeed over

pessimistic. To see this point, counted the number of

queries (to check that each group is unsupported)

performed by the ED module (Rob Frugal), over the

two TDBs for the different values of k, and

discovered that such number always coincides with n

k , except for CoopCat TDBs in the cases k = 10 and

k = 20: for example, for k = 10 and number of

transactions 400K (the biggest TDB), an additional

3790 item swaps are needed to find a robust grouping

and only 10 for k = 20. This is a strong empirical

evidence that in real life databases Rob Frugal

reaches a solution very fast, with complexity far

below the O(n2) worst case: e.g., for CoopCat with k

= 10 and 400 transactions, Rob Frugal only needs to

check a total of 3826 queries, while 3662 = 133, 956!

Second assessed the size of fake transactions added

to the databases after encryption. It is observed that

the size of fake transactions increases linearly with k.

It is observe that density affects the generation of

fake transactions: e.g., have that CoopProd∗, for k =

30, is only 8% larger than CoopProd while, for the

same k, CoopCat∗ is 80% larger than CoopCat. The

size of the fake transactions on synthetic databases is

assessed. The overhead of incremental encryption is

also assessed , which occurs when a new TDB is

appended; to this end, then split CoopProd with 500k

transactions into two-halves and , and treat as the

original TDB and as the appended one.

Encryption Overhead on CoopProd

VIII. CONCLUSION AND FUTURE WORK

In this paper, presenting a conservative model result ,

where the adversary knows the domain of items and

their exact frequency and can use this knowledge to

identify cipher items and cipher itemsets. An

encryption approach is proposed, called Rob Frugal

that is based on 1–1 substitution ciphers for items and

adding fake transactions to make each cipher item

share the same frequency as ≥ k−1 others. It makes

use of a compact synopsis of the fake transactions

© August 2018 | IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 147097 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 311

from which the true support of mined patterns from

the server can be efficiently recovered. A strategy for

incremental maintenance of the synopsis against

updates consisting of appends and dropping of old

transaction batches is also proposed. Unlike previous

works, such as and ,this formally proved that this

method is robust against an adversarial attack based

on the original items and their exact support. Our

experiments based on both large real and synthetic

datasets yield strong evidence in favor of the

practical applicability of this approach. Currently,

this privacy analysis is based on the assumption of

equal likelihood of candidates. It would be interesting

to enhance the framework and the analysis by

appealing to cryptographic notions such as perfect

secrecy.

REFERENCES

[1] W. K. Wong, D. W. Cheung, E. Hung, B. Kao,

and N. Mamoulis, “Security in outsourcing of

association rule mining,” in Proc. Int. Conf.Very

Large Data Bases, 2007, pp. 111–122.

[2] L. Qiu, Y. Li, and X. Wu, “Protecting business

intelligence and customer privacy while

outsourcing data mining tasks,” Knowledge

Inform. Syst.,vol. 17, no. 1, pp. 99–120, 2008.

[3] C. Clifton, M. Kantarcioglu, and J. Vaidya,

“Defining privacy for data mining,” in Proc. Nat.

Sci. Found.

[4] Workshop Next Generation Data Mining, 2002,

pp. 126–133.

[5] Fosca Giannotti, Laks V. S. Lakshmanan, Anna

Monreale, Dino Pedreschi, and Hui (Wendy)

Wang,” Privacy-Preserving Mining of

Association Rules From Outsourced Transaction

Databases”, IEEE

[6] SYSTEMS JOURNAL, VOL. 7, NO. 3,

SEPTEMBER 2013,pg385-395.

[7] I. Molloy, N. Li, and T. Li, “On the (in)security

and (im)practicality of outsourcing precise

association rule mining,” in Proc. IEEE Int. Conf

Data Mining, Dec. 2009, pp. 872–877.

[8] F. Giannotti, L. V. Lakshmanan, A. Monreale,

D. Pedreschi, and H. Wang, “Privacy-preserving

data

