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Abstract- There has been significant recent interest in 

the paradigm of data mining as-a-service. A company 

(data owner) lacking in proficiency or computational 

resources can outsource its mining needs to a third 

party service provider (server). In spite of this, both the 

items and the association rules of the outsourced 

database are considered private property of the 

company (data owner). To protect corporate or 

individuals privacy, the data owner transforms its data 

and ships it to the server, sends mining queries to the 

server, and recovers the true patterns from the 

extracted patterns received from the server. In this 

paper, experiment evaluation of outsourcing the 

association rule mining task within a corporate privacy-

preserving framework. Proposed an attack model based 

on background knowledge and devise a approach for 

privacy preserving outsourced mining. 

Represented approach ensures that each transformed 

item is indistinguishable with respect to the attacker’s 

background knowledge, from at least k−1 other 

transformed items. These comprehensive experiments 

on a very large and real transaction database 

demonstrate that these techniques are effective, 

scalable, and protect privacy. 

 

Index Terms- Association Rule Mining, Privacy 

Preserving Outsourcing. 

 

I. INTRODUCTION 

 

 

The problem of outsourcing the association rule 

mining task within a corporate privacy preserving 

framework is difficult. A construction body of work 

has been done on privacy preserving data mining 

(PPDM) in a variety of framework. A common 

attribute of most of the earlier studied frameworks is 

that the patterns mined from the data (which may be 

unclear, encrypted, anonymized or transformed) are 

intended to be shared with parties other than the data 

owner. The key peculiarity between such bodies of 

work and problem is that, in the latter, both the 

underlying data and the mined results are not 

intended for sharing and must remain private to the 

data owner. For this adopted a traditional frequency 

based attack model in which the server knows the 

exact set of items in the owner’s data and 

additionally, it also knows the exact support of every 

item in the original data. Wong et al. was one of the 

near the beginning works on defending against the 

frequency based attack in the data mining 

outsourcing scenario. Wong et al. introduced the idea 

of using fake items to guard against the frequency 

based attack; however, it was lacking a formal 

theoretical analysis of privacy guarantees, and has 

been shown to be flawed very recently in , where a 

method for breaking the proposed encryption is 

given. Therefore, in Giannotti et al. previous and 

preliminary work, Giannotti et al. proposed to solve 

this problem by using k-privacy, i.e., each item in the 

outsourced dataset should be indistinguishable from 

at least k − 1 items regarding their support. In this 

paper, the goal is to devise an encryption approach 

which enables formal privacy guarantees to be 

proved, and to validate this model over large-scale 

real-life transaction databases (TDB). The 

architecture behind this model. The client/owner 

encrypts its data using an encrypt/decrypt (E/D) 

module, which can be essentially treated as a black 

box from its perspective. This model is responsible 
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for transforming the input data into an encrypted 

database. The server conducts data mining and sends 

the (encrypted) patterns to the owner. This encryption 

approach has the property that the returned supports 

are not true supports. The E/D module recovers the 

true identity of the returned patterns as well their true 

supports. It is trivial to show that if the data are 

encrypted using 1–1 substitution ciphers (without 

using fake transactions), many ciphers and hence the 

transactions and patterns can be broken by the server 

with a high probability by launching the frequency-

based attack. Thus, the major focus of this paper is to 

devise encryption approaches such that formal 

privacy guarantees can be proven against attacks 

conducted by the server using background 

knowledge, while keeping the resource requirements 

under control. First, formally defining an attack 

model for the adversary and make the background 

knowledge the adversary may possess precise. The 

notion of privacy requires that, for each cipher-text 

item, there are at least k−1 distinct cipher items that 

are indistinguishable from the item regarding their 

supports. Secondly, developed an encryption 

approach, called Rob Fruga,l that the E/D module can 

employ to transform client data before it is shipped to 

the server. Third, to allowing the E/D module to 

recover the true patterns and their correct support, it 

is proposed that it creates and keeps a compact 

structure, called synopsis. For this providing the E/D 

module with an efficient strategy for incrementally 

maintaining the synopsis against updates in the form 

of appends. Also conducted a formal analysis based 

on this attack model and prove that the probability 

that an individual item, a transaction, or a pattern can 

be broken by the server can always be controlled to 

be below a threshold chosen by the owner, by setting 

the anonymity threshold k. This result holds 

unconditionally for the Rob Frugal approach. Then 

conduct experimental analysis of this schema using a 

large real dataset from the Coop store chain in Italy. 

The result shows that these encryption schemas is 

effective, scalable, and achieve the desired level of 

privacy. Providing here the key theoretical results 

which concern the complexity and privacy guarantees 

the privacy. Also discusses the results of a 

comprehensive set of experiments conducted using 

real and synthetic datasets.  

  

II. MODEL PRIVACY 

Consider denote the original TDB that the owner has. 

to protect individual identification of items, when the 

owner applies an encryption function to and 

transforms it to ,the encrypted database. Refer items 

in as plain items and items in as cipher items. The 

term item shall mean plain item by default. The 

notions of plain item sets, plain transactions, plain 

patterns, and their cipher counterparts are defined in 

the obvious way. use to denote the set of plain items 

and to refer to the set of cipher items. 

 

A) Adversary Knowledge: The server or an 

opponent might gains access to it may possess some 

prior or background knowledge using which 

opponent can conduct attacks on the encrypted 

database. Generically refer to any of these agents as 

an attacker. Here adopting a conventional model and 

assuming that the attacker knows exactly the set of 

(plain) items in the original and their true supports in, 

i.e., , . The attacker may have access to similar data 

from a competing organization, may read published 

reports, etc. In reality, the opponent may be having 

approximate knowledge of the supports or may know 

the exact/approximate supports of a subset of items in 

D. However, to make the analysis robust, one can 

adopt the conventional assumption that he knows the 

exact support of every item. Remember, that as the 

opponent has access to the encrypted database D*, he 

also knows the supports, where is the set of cipher 

items in the encrypted database D*. 

1)Replacing each plain item in D by a 1–1 

substitution cipher and 

2)Adding fake transactions to the database. 

Consider, that the opponent knows this and thus he 

knows that | | = |I|. Essentially, compared to, 

adversary knowledge model corresponds to a (100%, 

0%) knowledge model, confined to single items. 

Assume that the opponent neither has the knowledge 

of plaintext transactions nor the frequency of item 

sets and the distribution of transaction lengths in the 

original database. 

 

b)Attack Model: By assuming that the service 

provider (who can be an opponent) is semi-honest in 

the sense that although he does not know the details 

of encryption algorithm, opponent can be curious and 

he can use his prior knowledge to make assumption 

on the encrypted transactions. Also considered, that 

the opponent always returns (encrypted) item sets 
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together with their exact support. The data owner 

considers the true identity of: 

1) Every cipher item; 

2) Every cipher transaction; 

3) Every cipher frequent pattern; 

As intellectual property which should be protected. 

The following attack model will considers all these. 

Refer to prob(e) and prob(E) as crack probabilities. 

From the point of view of the owner, minimizing the 

probabilities of crack is desirable. Intuitively, 

Cand(e) and Cand(E) should be as large as possible. 

Ideally, Cand(e) should be the whole set of plaintext 

items. This can be achieved if one can bring each 

cipher item to the same level of support, e.g., to the 

support of the most frequent item in D. 

Unfortunately, this option is impractical, as it will 

lead to a large size of the fake transactions, which in 

turn leads to a dramatic explosion of the frequent 

patterns and making pattern mining at the server side 

computationally prohibitive.  

This motivates us of relaxing the equal-support 

constraint and introducing item k-anonymity as a 

compromise. 

 

c) Problem Statement: To compute the privacy 

guarantees of an encrypted database, Here define the 

following notion. 

Definition 2: Given a database D and its encrypted 

version D*,  say D* is k-private if: 

Problem studied: Given a plain database D, construct 

a k-private cipher database D* by using substitution 

ciphers and adding fake transactions such that from 

the set of frequent cipher patterns and their support in 

D* sent to the owner by the server, the owner can 

reconstruct the true frequent patterns of D and their 

exact support. Additionally, like to minimize the 

space and time incurred by the owner in the process 

and the mining overhead incurred by the server. 

 

III. ENCRYPTION/DECRYPTION APPROACH 

 

A. Encryption: In this section, introducing the 

encryption approach, called Rob Frugal, which 

transforms a TDB D into its encrypted version D*. 

This approach is parametric with respect to k > 0 and 

consists of three main steps: 

1)Using 1–1 substitution ciphers for each plain item; 

2)Using a specific item k-grouping method; and 

3)Using a method for adding new fake transactions 

for achieving k-privacy. 

The constructed fake transactions are added to D 

(once items are replaced by cipher items) to form D 

*, and transmitted to the server. A record of the fake 

transactions, i.e., , is stored by the E/D module in the 

form of a compact synopsis, as discussed in previous 

sections. 

 

B. Decryption: When the client requests the 

execution of a pattern mining query to the server, 

specifying a minimum support threshold σ, the server 

returns the computed frequent patterns from D*. 

Clearly, for every item set S and its corresponding 

cipher item set E, have that ≤ . For each cipher 

pattern E returned by the server together with, the 

E/D module recovers the corresponding plain pattern 

S. It needs to reconstruct the exact support of S in D 

and decide on this basis if S is a frequent pattern. To 

achieve this goal, the E/D module adjusts the support 

of E by removing the effect of the fake transactions  

(E)., this follows from the fact that support of an item 

set is additive over a disjoint union of transaction 

sets. Finally, the pattern S with adjusted support is 

kept in the output if ≥ σ. The calculation of (E) is 

performed by the E/D module using the synopsis of 

the fake transactions in D * \D. 

The proposed encryption/decryption approach is a 

viable solution for privacy-preserving pattern mining 

over outsourced TDB, provided that a correct and 

efficient implementation exists. On the efficiency 

side, it is not practical to store the support (E) for 

every cipher pattern. In order to realize the 

encryption approach efficiently, need to address the 

following technical issues. 

1) How do cluster items into groups of ? 

2) How do create the needed fake transactions? 

3) How is the synopsis represented and stored?  

 

C. Grouping Items for k-Privacy 

Given the items support table, several strategies can 

be adopted to cluster the items into groups of size k. 

Start  from a simple grouping method called Frugal. 

By assuming the item support table is sorted in 

descending order of support and refer to cipher items 

in this order as , etc. 

 

Definition 3: The Frugal method consists of grouping 

together cipher items into groups of k adjacent items 
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in the item support table in decreasing order of 

support, starting from the most frequent item . 

Assume . . . is the list of cipher items in descending 

order of support (with respect to D), the groups 

created by Frugal are {e1, . . . , }, {, . . . , }, and so 

on. The last group, is less than k in size, is merged 

with its previous group. By denoted the grouping 

obtained using the above definition as G frug. For 

example, consider the example TDB and its 

associated (cipher) item support shown in Fig. 2. For 

k = 2, has two groups: {} and { , , }. This 

corresponds to the partitioning groups shown in 

Table I(a). Thus, in D *,the support of will be 

brought to that of ; and the support of and brought to 

that of . Given the fact that the support of the items 

strictly decreases monotonically, 

Frugal grouping is optimal among all the groupings 

with the item support table sorted in descending order 

of support. This means, it minimizes ||G||, the size of 

the fake transactions added, and hence the size ||D*||. 

But is Frugal a robust grouping, i.e., will it guarantee 

that itemsets (or transactions) cannot be cracked with 

a probability higher than k ? The answer is no, in 

general. To see this point, consider the item support 

table in Table I: the first group created by Frugal for 

k = 2, {} [see Table I(a)] is supported in D, because 

occur together in a transaction of D. Therefore, there 

only exists one itemset candidate of {e2, e4}, i.e., the 

privacy guarantee is 1-privacy.To fix the privacy 

vulnerabilities of Frugal, introduce the RobFrugal 

grouping method, which modifies Frugal by requiring 

that no group is a supported itemset in D. 

 

Definition 4: Given a TDB D and its Frugal grouping 

= , the grouping method RobFrugal consists in 

modifying the groups of Gfrug by repeating the 

following operations, until no group of items is 

supported in D: 

 

1)select the smallest such that find the most frequent 

item such that, for the least frequent item i of have: 

swap with in the grouping. 

For example, given the item support table in Fig. 2, 

the grouping illustrated in Table I(b), obtained by 

exchanging e4 and e5 in the two groups of Frugal, is 

now robust: none of the two groups, considered as 

itemsets, is supported by any transaction in D. The 

aim of Step 2 in Definition 4 is to obtain a robust 

grouping while maintaining as small as possible the 

number of fake transactions that are added to achieve 

k-privacy. In particular, It will show the information 

about fake transactions can be maintained by the data 

owner using a compact synopsis. This step is used to 

ensure the synopsis is as small as possible. 

The key property of Rob Frugal is that, by 

construction, it is a robust grouping for any input 

TDB D. It is immediate to note that if the support in 

D of each group of the initial grouping Gfrug is 0, 

then RobFrugal produces a robust and optimal 

grouping, where optimal means that it minimizes the 

number of the fake transactions that are created by 

this encryption approach. On the other hand, it should 

be noted that a grouping according to Rob Frugal 

may not exist, depending on the extent of density in 

the TDB. For example, in a TDB where each pair of 

items occurs at least once together, Rob Frugal will 

not find a grouping for k = 2. In this case, a simple 

solution is to keep increasing the value of k until a 

Rob Frugal grouping approach exists. The intuition is 

that as k gets larger it is less likely that there is a real 

transaction containing all items in a group. However, 

with a large k, the number of fake transactions 

increases. This affects storage and processing at the 

server side although the data owner can always 

maintain information about fake transactions using a 

compact synopsis of size n being the number of 

items. In practice, It has been found that even for 

small values of k = 10 to 50, a Rob Frugal grouping 

approach does exist. This was the case in all these 

experiments with real transaction data. In the Rob 

Frugal encryption approach, the output of grouping 

can be represented as the noise table. It extends the 

item support table with an extra column “Noise” 

indicating, for each cipher item e, the difference 

among the support of the most frequent cipher item in 

e’s group and the support of e itself, as reported in 

the item support table. Denoted the noise of a cipher 

item e as N(e). Continuing the example, the noise 

table obtained with Rob Frugal is reported in Table 

II(a). The noise table represents the tool for 

generating the fake transactions  to be added to D to 

obtain D*. 

 

IV. CONSTRUCTING FAKE TRANSACTIONS 

 

Given a noise table specifying the noise N(e) needed 

for each cipher item e, for this  the fake transactions 

generated as follows. First, it drop the rows with zero 
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noise, corresponding to the most frequent items of 

each group or to other items with support equal to the 

maximum support of a group. Then the remaining 

rows are sorted in descending order of noise. Let , . . . 

, be the obtained ordering of (remaining) cipher 

items, with associated noise N(), . . . ,N(). The 

following fake transactions are generated: 

1) N() − N() instances of the transaction {}; 

2) N() − N() instances of the transaction {, }; 

3) . . . ; 

4) N (−1) − N () instances of the transaction {, . . . , }; 

5) N() instances of the transaction {, . . . ,  }. 

Suppose cipher items of nonzero noise in Table II(a). 

The following two fake transactions are generated: 

two instances of the transaction {} and one instance 

of the transaction {}. Note that even though the 

attacker may know the details of the construction 

method, he/she is not able to distinguish these fake 

transactions from the true ones, since the attacker 

does not have any background knowledge of 

frequency of item sets or of original transaction 

length distribution. It can be shown that this  method 

yields a minimum number of different types of fake 

transactions that equal the number of cipher items 

with distinct noise. This observation yields a compact 

synopsis for the client of the introduced fake 

transactions. The purpose of using a compact 

synopsis is to reduce the storage overhead at the side 

of the data owner who may not be equipped with 

sufficient computational resources and storage, which 

is common in the outsourcing data model. In order to 

implement the synopsis efficiently, need to use a hash 

table generated with a minimal perfect hash function 

[16]. Minimal perfect hash functions are widely used 

for memory efficient storage and fast retrieval of 

items from static sets. A minimal perfect hash 

function is a perfect hash function that maps n keys 

to n consecutive integers, usually. Hence, h is a 

minimal perfect hash function over a set S if and only 

if implies and there exists an integer p such that the 

range of h is . A minimal perfect hash function h is 

order-preserving if for any keys j and i, j < i implies 

h(j) < h(i). In this approach, the items of the noise 

table with N() > 0 are the keys of the minimal perfect 

hash function. Given function h computes an integer 

in denoting the position of the hash table storing the 

triple of values _, timesi, occi, where timesi 

represents the number of times that the fake 

transaction {e1, e2, . . . , }occurs in the set of fake 

transactions, and occi is the number of times that ei 

occurs altogether in the future fake transactions after 

the transaction {, , . . . , }. Given a noise table with m 

items with non null noise, this approach generates 

hash tables for the group of items. In general, the ith 

entry of a hash table HT containing the item ei has = 

N() − N(), =, where g is the number of items in the 

current group. Note that each hash table HT 

represents concisely the fake transactions involving 

all and only the items in a group of g ≤ items. The 

hash tables for the items of nonzero noise in Table 

II(a) are shown in Table II(b). Finally, use a (second-

level) ordinary hash function H to map each item e to 

the hash table HT containing e. Note that after the 

data owner outsources the encrypted database 

(including the fake transactions), he/she does not 

need to maintain the fake transactions in its own 

storage .Instead the data owner only has to maintain a 

compact synopsis, which stores all the information 

needed on the fake transactions, for later recovery of 

real supports of item sets. The size of the synopsis is 

linear in the number of items and is much smaller 

than that of the fake transactions. 

With the above data structure, one can define the 

function RS that allows an efficient computation of 

the real support of a pattern E = {, , . . . , }with fake 

support s as follows: where: i) is the item in E such 

that for 1 ≤ j ≤ n, have h(ej) ≤ h(), and ii) HT = H() 

is the hash table associated by H to any item ei of E. 

For example, in Table I(b), for = {}, , whereas for = { 

, }, , where is the fake support of . This is exactly 

right since is fakely added three times while is fakely 

added two times. 

 

V. EXPERIMENTS 

 

In this section, presenting report on experimented 

empirical evaluation to assess the 

encryption/decryption overhead and the overhead at 

the server side incurred by the proposed schema. 

 

A. Datasets: For analysis purpose experimented on a 

large real-world database. The real world database is 

donated to us by Coop, a cooperative of consumers 

that is today the largest supermarket chain in India. 

Selected the transactions occurring during four 

periods of time in a subset of Coop stores, creating in 

this way four different databases with varying 

number of transactions: from 100k to 300k 
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transactions. In all the datasets the transactions 

involve 15713 different products grouped into 366 

marketing categories. Transactions are itemsets, i.e., 

no product occurs twice in the same transaction. 

Assume two distinct kinds of TDBs: 

1) Product-level Coop TDBs, denoted by 

Coop-Prod, where items correspond to products, and 

2) Category level Coop TDBs that is denote by 

CoopCat, where items correspond to the category of 

the products in the original transactions. In these 

datasets, = 188 for CoopProd, while = 90 for 

CoopCat. Also, the two kind of TDBs exhibit very 

different density properties. The number of frequent 

patterns found in CoopCat tends to explode for 

higher support thresholds, compared to CoopProd. 

Also experimented with this algorithms for both 

CoopProd and CoopCat. 

 

B. Experimental Evaluation: Implemented Rob 

Frugal encryption & decryption approach in Java. All 

experiments were performed on an intel Core2 Duo 

processor with a 2.66 GHz CPU and 3GB RAM over 

a Win 7 platform. Adopted the a priori 

implementation by Christian Borgelt,2 written in C 

and one of the most highly optimized 

implementations. 

 

VI. ENCRYPTION OVERHEAD 

 

First assessed the total time needed by the ED 

module to encrypt the database (grouping, synopsis 

construction, creation of fake transactions): timings 

are reported in Fig. 3 for CoopProd and CoopCat, for 

different values of k and different number of 

transactions. The results show that the encryption 

time is always small; it is under 1 s for the biggest 

CoopProd TDB, and below 0.8 s for the biggest 

CoopCat TDB. Indeed, it is always less than the time 

of a single mining query, which is at least 1 s by 

Apriori, as shown in Fig. 4(d). Therefore, when there 

are multiple mining queries, which is always the case 

for the outsourcing system; the encryption overhead 

of this approach is negligible compared with the cost 

of mining. It is worth noting that these experiments 

provide empirical evidence that the theoretical 

complexity upper bound of O(n2) is indeed over 

pessimistic. To see this point, counted the number of 

queries (to check that each group is unsupported) 

performed by the ED module (Rob Frugal), over the 

two TDBs for the different values of k, and 

discovered that such number always coincides with n 

k , except for CoopCat TDBs in the cases k = 10 and 

k = 20: for example, for k = 10 and number of 

transactions 400K (the biggest TDB), an additional 

3790 item swaps are needed to find a robust grouping 

and only 10 for k = 20. This is a strong empirical 

evidence that in real life databases Rob Frugal 

reaches a solution very fast, with complexity far 

below the O(n2) worst case: e.g., for CoopCat with k 

= 10 and 400 transactions, Rob Frugal only needs to 

check a total of 3826 queries, while 3662 = 133, 956! 

Second assessed the size of fake transactions added 

to the databases after encryption. It is observed that 

the size of fake transactions increases linearly with k. 

It is observe that density affects the generation of 

fake transactions: e.g., have that CoopProd∗, for k = 

30, is only 8% larger than CoopProd while, for the 

same k, CoopCat∗ is 80% larger than CoopCat. The 

size of the fake transactions on synthetic databases is 

assessed. The overhead of incremental encryption is 

also assessed , which occurs when a new TDB is 

appended; to this end, then split CoopProd with 500k 

transactions into two-halves and , and treat as the 

original TDB and as the appended one.  

 

Encryption Overhead on CoopProd 

 
VIII. CONCLUSION AND FUTURE WORK 

 

In this paper, presenting a conservative model result , 

where the adversary knows the domain of items and 

their exact frequency and can use this knowledge to 

identify cipher items and cipher itemsets. An 

encryption approach is proposed, called Rob Frugal 

that is based on 1–1 substitution ciphers for items and 

adding fake transactions to make each cipher item 

share the same frequency as ≥ k−1 others. It makes 

use of a compact synopsis of the fake transactions 
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from which the true support of mined patterns from 

the server can be efficiently recovered. A strategy for 

incremental maintenance of the synopsis against 

updates consisting of appends and dropping of old 

transaction batches is also proposed. Unlike previous 

works, such as and ,this formally proved that this 

method is robust against an adversarial attack based 

on the original items and their exact support. Our 

experiments based on both large real and synthetic 

datasets yield strong evidence in favor of the 

practical applicability of this approach. Currently, 

this privacy analysis is based on the assumption of 

equal likelihood of candidates. It would be interesting 

to enhance the framework and the analysis by 

appealing to cryptographic notions such as perfect 

secrecy.  
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