
© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 861

A Novel Technique for Auditing Through Key Exposure

on Cloud Storage

M.Prasoona
1
, I.Kavitha Jackleen

2

1
M.Tech (CSE)., Dept of CSE, Global College Of Engineering and Technology, Kadapa, Andhra Pradesh,

2
Assistant Professor, Dept of CSE, Global College Of Engineering and Technology, Kadapa, Andhra

Pradesh

Abstract- Key-exposure resistance has always been an

important issue for in-depth cyber defence in many

security applications. Recently, how to deal with the key

exposure problem in the settings of cloud storage

auditing has been proposed and studied. To address the

challenge, existing solutions all require the client to

update his secret keys in every time period, which may

inevitably bring in new local burdens to the client,

especially those with limited computation resources,

such as mobile phones. In this paper, we focus on how

to make the key updates as transparent as possible for

the client and propose a new paradigm called cloud

storage auditing with verifiable outsourcing of key

updates. In this paradigm, key updates can be safely

outsourced to some authorized party, and thus the key-

update burden on the client will be kept minimal. In

particular, we leverage the third party auditor (TPA) in

many existing public auditing designs, let it play the

role of authorized party in our case, and make it in

charge of both the storage auditing and the secure key

updates for keyexposure resistance. In our design, TPA

only needs to hold an encrypted version of the client’s

secret key while doing all these burdensome tasks on

behalf of the client. The client only needs to download

the encrypted secret key from the TPA when uploading

new files to cloud. Besides, our design also equips the

client with capability to further verify the validity of the

encrypted secret keys provided by the TPA. All these

salient features are carefully designed to make the

whole auditing procedure with key exposure resistance

as transparent as possible for the client. We formalize

the definition and the security model of this paradigm.

The security proof and the performance simulation

show that our detailed design instantiations are secure

and efficient.

Index Terms- Cloud storage, outsourcing computing,

cloud storage auditing, key update, verifiability.

I. INTRODUCTION

Cloud computing, as a new technology paradigm

with promising further, is becoming more and more

popular nowadays. It can provide users with

seemingly unlimited com-puting resource.

Enterprises and people can outsource time-

consuming computation workloads to cloud without

spending the extra capital on deploying and

maintaining hardware and software. In recent years,

outsourcing computation has attracted much attention

and been researched widely. It has been considered in

many applications including scientific computations

[1], linear algebraic computations [2], linear

programming computations [3] and modular

exponentiation computations [4], etc. Besides, cloud

computing can also provide users with seemingly

unlimited storage resource. Cloud storage is

universally viewed as one of the most important

services of cloud computing. Although cloud stor-age

provides great benefit to users, it brings new security

challenging problems. One important security

problem is how to efficiently check the integrity of

the data stored in cloud. In recent years, many

auditing protocols for cloud storage have been

proposed to deal with this problem. These pro-tocols

focus on different aspects of cloud storage auditing

such as the high efficiency [5]–[17], the privacy

protec-tion of data [18], the privacy protection of

identities [19], dynamic data operations [13], [15],

[16], [20], the data sharing [21], [22], etc. The key

exposure problem, as another important problem in

cloud storage auditing, has been considered [23]

recently. The problem itself is nontrivial by nature.

Once the client’s secret key for storage auditing is

exposed to cloud, the cloud is able to easily hide the

data loss incidents for maintaining its reputation,

even discard the client’s data rarely accessed for

saving the storage space. Yu et al. [23] constructed a

cloud storage auditing protocol with key-exposure

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 862

resilience by updating the user’s secret keys

periodically. In this way, the damage of key exposure

in cloud storage auditing can be reduced. But it also

brings in new local burdens for the client because the

client has to execute the key update algorithm in each

time period to make his secret key move forward. For

some clients with limited computation resources, they

might not like doing such extra computations by

themselves in each time period. It would be

obviously more attractive to make key updates as

transparent as possible for the client, especially in

frequent key update scenarios. In this paper, we

consider achieving this goal by outsourcing key

updates. However, it needs to satisfy several new

requirements to achieve this goal. Firstly, the real

client’s secret keys for cloud storage auditing should

not be known by the authorized party who performs

outsourcing computation for key updates Otherwise,

it will bring the new security threat. So the authorized

party should only hold an encrypted version of the

user’s secret key for cloud storage auditing.

Secondly, because the authorized party performing

outsourcing computation only knows the encrypted

secret keys, key updates should be completed under

the encrypted state. In other words, this authorized

party should be able to update secret keys for cloud

storage auditing from the encrypted version he holds.

Thirdly, it should be very efficient for the client to

recover the real secret key from the encrypted version

that is retrieved from the authorized party. Lastly, the

client should be able to verify the validity of the

encrypted secret key after the client retrieves it from

the authorized party. The goal of this paper is to

design a cloud storage auditing protocol that can

satisfy above requirements to achieve the outsourcing

of key updates. The main contributions are as

follows: (1) We propose a new paradigm called cloud

storage auditing with verifiable outsourcing of key

updates. In this new paradigm, key-update operations

are not performed by the client, but by an authorized

party. The authorized party holds an encrypted secret

key of the client for cloud storage auditing and

updates it under the encrypted state in each time

period. The client downloads the encrypted secret

key from the authorized party and decrypts it only

when he would like to upload new files to cloud. In

addition, the client can verify the validity of the

encrypted secret key.

II RELATED WORK

Outsourcing Computation: How to effectively

outsource time-consuming computations has become

a hot topic in the research of the theoretical computer

science in the recent two decades. Outsourcing

computation has been considered in many application

domains. Chaum and Pedersen [24] firstly proposed

the notion of wallet databases with observers, in

which a hardware was used to help the client perform

some expensive computations. The method for secure

out-sourcing of some scientific computations was

proposed by Atallah et al. [1]. Chevallier-Mames et

al. [25] designed the first effective algorithm for

secure delegation of ellipticcurve pairings based on

an untrusted server. The first out-sourcing algorithm

for modular exponentiations was proposed by

Hohenberger and Lysyanskaya [26], which was based

on the methods of precomputation and server-aided

compu-tation. Atallah and Li [27] proposed a secure

outsourcing algorithm to complete sequence

comparisons. Chen et al. [4] proposed new

algorithms for secure outsourcing of modular

exponentiations. Benjamin and Atallah [2] researched

on how to securely outsource the computation for

linear algebra. Atallah and Frikken [28] gave further

improvement based on the weak secret hiding

assumption. Wang et al. [3] presented an efficient

method for secure outsourcing of linear programming

computation. Chen et al. [29] proposed an outsourc-

ing algorithm for attribute-based signatures

computations. Zhang et al. [30] proposed an efficient

method for outsourcing a class of homomorphic

functions. Cloud Storage Auditing: How to check the

integrity of the data stored in cloud is a hot topic in

cloud security. The notion of “provable data

possession” (PDP) was firstly proposed by Ateniese

et al. [5] to ensure data possession at untrusted

servers. The notion of “proof of retrievability” (PoR)

was proposed by Juels et al. [6] to ensure both

possession and retriev-ability of data at untrusted

servers. Wang et al. [18] proposed a public privacy-

preserving auditing protocol. They used the ran-dom

masking technique to make the protocol achieve

privacy-preserving property. Proxy provable data

possession protocol was proposed in [17]. The

auditing protocols supporting dynamic data

operations were also proposed in [13] and [20]. Yang

and Jia [16] proposed an auditing protocol supporting

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 863

both the dynamic property and the privacy preserving

property. The privacy preserving of the user’s

identity for shared data auditing was considered in

[19]. The problem of user revocation in shared data

auditing was considered in [21]. Yuan and Yu [22]

proposed a public auditing protocol for data sharing

with multiuser modification. Sookhak et al. [31]

proposed a public cloud auditing protocol for

securing big data storage based on algebraic

signature. Guan et al. [32] proposed the first cloud

storage auditing protocol based on

indistinguishability obfuscation, which is especially

useful for low-power cloud users. Yang et al. [33]

proposed a public auditing protocol for shared cloud

data supporting both iden-tity privacy and identity

traceability. All above auditing protocols are all built

on the assumption that the secret key of the client is

absolutely secure and would not be exposed. In [23],

the authors firstly considered the key exposure

problem in cloud storage auditing and proposed a

cloud storage auditing protocol with key-exposure

resilience. In that protocol, the secret keys for cloud

storage auditing are updated periodically. As a result,

any dishonest behaviors, such as deleting or

modifying the client’s data previously stored in

cloud, can all be detected, even if the cloud gets the

client’s current secret key for cloud storage auditing.

However, the client needs to update his secret key in

each time period. It will add obvious computation

burden to the client, especially when key updates are

very frequent.

III. PROPOSED ARCHITECTURE

In this paper, we concentrate on the best way to make

the key overhauls as straightforward as could be

expected under the circumstances for the customer

and propose another worldview called distributed

storage reviewing with certain outsourcing of key

redesigns. In this worldview key overhauls can be

securely outsourced to some approved gathering and

along these lines the key-upgrade trouble on the

customer will be kept insignificant. In particular, we

influence the outsider inspector (TPA) in numerous

current open examining outline, let it assume the part

of approved gathering for our situation and make it

accountable for both the capacity reviewing and

secure key upgrades for key-presentation resistance.

they are not generated the particular key of any file

means one file are only on e key are generated In our

outline, TPA just needs to hold a scrambled variant

of the customer's mystery key, while doing all these

difficult assignments for the benefit of the customer.

The customer just needs to download the scrambled

mystery key from the TPA while transferring new

documents to cloud. Moreover, our plan additionally

outfits the customer with capacity to facilitate

confirm the legitimacy of the scrambled mystery keys

gave by TPA. We formalize the definition and the

security model of this worldview. The security

confirmation and the execution reenactment

demonstrate that our point by point plan

instantiations are secure and productive.

The TPA does not know the real secret key of the

client for cloud storage auditing, but only holds an

encrypted version. In the detailed protocol we use the

blinding technique with homomorphism property to

form the encryption algorithm to encrypt the secret

key held by the TPA.it makes our protocol secure and

the decryption operation efficient.

2. Meanwhile, The TPA can complete key updates

under the encrypted state. The Client can validity of

the encrypted secret key when he retrieve it from the

TPA.

In Convergent encryption has been used to enforce

data confidentiality. Data copy is encrypted below a

key beneath by confusion the data itself. This

convergent key is used for encrypt and decrypt a data

copy. Moreover, such not permitted users cannot

decrypt the cipher text even conspire with the S-CSP

(storage cloud service provider). Security analysis

make obvious that that system is secure in terms of

the description particular in the planned security

model.

Figure 1: Architecture for Authorized Deduplication

This work known a company by where the

employee data such as name, password, email id,

contact number and designation is registered by

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 864

admin or owner of the company based on his userid

and password employees of the company able to

perform operations such as file upload download and

duplicate checks on the files based on his privileges.

There are three entities define in hybrid cloud

architecture of authorized deduplication.

 Data Users: Outsource data storage to the S-

CSP(storage cloud service provider) and access the

data later. In a storage system supporting

deduplication, the user only uploads EXCLUSIVE

data but does not upload any duplicate data to

save the upload bandwidth, which may be

owned by the same user or different users. Each

file is confined with the convergent encryption key

and privilege keys to understand the authorized

deduplication with discrepancy privileges.

 Private Cloud: This is new entity for facilitating

users secure use of cloud services. The private keys

for privileges are managed by private cloud, which

provides the file token to users. Specifically, since

the computing resources at data user/owner side are

controlled and the public cloud is not fully trusted in

carry out, private cloud is able to provide data

user/owner with an finishing situation and

infrastructure working as an interface among user and

the public cloud.

 S-CSP(storage cloud service provider):This is an

entity that provides a data storage service in public

cloud. The S- CSP make available the data

outsourcing service and stores data in support of the

users. To decrease the storage cost, the S- CSP

reducing the storage of redundant data via

deduplication and keeps only unique data. In this

paper, we assume that S-CSP is always online and

has abundant storage capacity and computation

power.

Algorithm

Step 1: Start

Step 2: A User tries to login into the cloud

Step 3: Admin checks the user login id and

passwords

Step 4 :If (Login details = = correct)

Step 5: User is login tinto the cloud

Step 6: Else if(Login details = = In correct)

Step 7: Reject that particluar user login.

Step 8: On SucessLogin Upload Data and Control

 Duplicate Check.

Step 9: Stop

Algorithm Explanation

Our completion of the Client provides the following

function calls to support token generation and

deduplication along the file upload process.

 FileTag(File) - It computes SHA-1 hash of the

File as File Tag;

 TokenReq(Tag, UserID) - It requests the Private

Server for File Token generation with the File

Tag and User ID;

 DupCheckReq(Token) - It requests the Storage

Server for Duplicate Check of the File by

sending the file token received from private

server;

 ShareTokenReq(Tag, {Priv.}) - It requests the

Private Server to generate the Share File Token

with the File Tag and Target Sharing Privilege

Set;

 FileEncrypt(File) - It encrypts the File with

Convergent Encryption using 256-bit AES

algorithm in cipher block chaining (CBC) mode,

where the convergent key is from SHA-256

Hashing of the file;

 FileUploadReq(FileID, File, Token) – It uploads

the File Data to the Storage Server if the file is

Unique and updates the

 File Token stored. Our completion of the Private

Server includes matching request handlers for

the token production and retain a key storage

with Hash Map.

 TokenGen(Tag, UserID) - It loads the connected

privilege keys of the user and produce the token

with HMAC-SHA-1 algorithm

IV. EXPERIMENTAL STUDY

We show the system model for cloud storage auditing

with verifiable outsourcing of key updates in Fig. 1.

There are three parties in the model: the client, the

cloud and the third-party auditor (TPA). The client is

the owner of the files that are uploaded to cloud. The

total size of these files is not fixed, that is, the client

can upload the growing files to cloud in different

time points. The cloud stores the client’s files and

provides download service for the client. The TPA

plays two important roles: the first is to audit the data

files stored in cloud for the client; the second is to

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 865

update the encrypted secret keys of the client in each

time period. The TPA can be considered as a party

with powerful computational capability or a service

in another independent cloud. Similar to [23], the

whole lifetime of the files stored in cloud is divided

into T + 1 time periods (from 0-th to T -th time

periods). Each file is assumed to be divided into

multiple blocks. In order to simplify the description,

we do not furthermore divide each block into

multiple sectors [7] in the description of our protocol.

In the end of each time period, the TPA updates the

encrypted client’s secret key for cloud storage

auditing according to the next time period. But the

public key keeps unchanged in the whole time

periods. The client sends the key requirement to the

TPA only when he wants to upload new files to

cloud. And then the TPA sends the encrypted secret

key to the client. After that, the client decrypts it to

get his real secret key, generates authenticators for

files, and uploads these files along with

authenticators to cloud. In addition, the TPA will

audit whether the files in cloud are stored correctly

by a challenge-response protocol between it and the

cloud at regular time.

B. Definitions

(1) The definition of cloud storage auditing protocol

with verifiable outsourcing of key updates. Definition

1: A cloud storage auditing protocol with secure

outsourcing of key updates is composed by seven

algorithms (SysSetup, EkeyUpdate, VerESK,

DecESK, AuthGen, Proof-Gen, ProofVerify), shown

below:

1) SysSetup: the system setup algorithm is run by the

client. It takes as input a security parameter k and the

total number of time periods T , and generates an

encrypted initial client’s secret key E S K0, a

decryption key D K and a public key P K . Finally,

the client holds D K , and sends E S K0 to the TPA.

2) EkeyUpdat e: the encrypted key update algorithm

is run by the TPA. It takes as input an encrypted

client’s secret key E S K j , the current period j and

the public key P K , and generates a new encrypted

secret key E S K j +1 for period j + 1.

3) VerESK : the encrypted key verifying algorithm is

run by the client. It takes as input an encrypted

client’s secret key E S K j , the current period j and

the public key P K , if E S K j is a well-formed

encrypted client’s secret key, returns 1; o therwise,

returns 0.

4) DecESK : the secret key decryption algorithm is

run by the client. It takes as input an encrypted

client’s secret key E S K j , a decryption key D K ,

the current period j and the public key P K , returns

the real client’s secret key S K j in this time period.

5) AuthGen: the authenticator generation algorithm is

run by the client. It takes as input a file F, a client’s

secret key S K j , the current period j and the public

key P K , and generates the set of authenticators for F

in time period j .

6) Proof Gen: the proof generation algorithm is run

by the cloud. It takes as input a file F, a set of

authenticators , a challenge Chal, a time period j and

the public key P K , and generates a proof P which

proves the cloud stores F correctly.

7) Proof Verify: the proof verifying algorithm is run

by the TPA. It takes as input a proof P, a challenge

Chal, a time period j , and the public key P K , and

returns “True” if P is valid; or “False”, otherwise.

(2) Definition of Security As same as other cloud

storage auditing protocols [5]–[7], [9]–[13], [15]–

[18], [20], the malicious cloud is viewed as the

adversary in our security model. We use three games

(Game 1, Game 2 and Game 3) to

describe the adversaries with different compromising

abilities who are against the security of the proposed

protocol. Specifically, Game 1 describes an

adversary, who fully compromises the TPA to get all

encrypted secret keys E S K j (periods j = 0, . . . , T),

tries to forge a valid authenticator in any time period.

This game, in fact, shows the security should satisfy

that the TPA cannot help the cloud to forge any

authenticator in any time period even if it knows the

encrypted secret keys. Game 2 describes an

adversary, who compromises the client to get D K ,

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 866

tries to forge a valid authenticator in any time period.

This game, in fact, shows the security should satisfy

that an adversary cannot forge any authenticator in

any time period even if it gets the decryption secret

key D K by attacking the client. Game 3 provides the

adversary more abilities, which describes an

adversary, who compromises the client and the TPA

to get both E S K j and D K at one time period j , tries

to forge a valid authenticator before time period j .

This game, in fact, shows the security should satisfy

that an adversary cannot forge any authenticator prior

to one certain time period if it attacks the TPA and

the client simultaneously to get their secret keys in

this time period

Our evaluation focuses on comparing the overhead

induced by authorization steps, including file token

generation and share token generation, beside the

convergent encryption and file upload steps. We

appraise the overhead by unreliable various factors,

together with 1) File Size 2) Number of Stored Files

3) Deduplication Ratio 4) Privilege Set Size. We

break down the upload process into 6 steps, 1)

Tagging 2) Token Generation 3) Duplicate Check 4)

Share Token Generation 5) Encryption 6) Transfer .

For each step, we record the start and end time of it

Fig Time Breakdown for the VM

and therefore obtain the breakdown of the total time

spent. We present the regular time taken in every data

set in the figures

File Size

To appraise the consequence of file size to the time

spent on various steps, we upload 100 unique files

(i.e., without any deduplication opportunity) of

particular file size and record the time break down.

Using the unique files enables us to evaluate the

worst-case scenario where we have to upload all file

data. The average time of the steps from test sets of

different file size are plotted in Figure 2. The time

spent on tagging, encryption, upload enlarge linearly

with the file size, since these operations involve the

actual file data and incur file I/O with the whole file.

Number of Stored Files

To evaluate the effect of number of stored files in the

system, we upload 10000 10MB unique files to the

system and record the breakdown for every file

upload. From Figure 3, every step remains constant

along the time. Token checking is done with a hash

table and a linear search would be carried out in case

of collision.

To appraise the consequence of the deduplication

ratio, we prepare two unique data sets, each of which

consists of 50 100MB files. We first upload the first

set as an initial upload. For the second upload, we

pick a portion of 50 files, through given

deduplication ratio from the initial set as duplicate

files and remaining files from the second set as

unique files. The average time of uploading the

second set is presented in Figure 2.

Fig 2. Time Breakdown for different Number of

stored files

To evaluate the effect of privilege set size, we upload

100 10MB unique files with different size of the data

owner and target share privilege set size. In Figure 5,

it shows by taking token generation increases linearly

as more keys are associated with the file and also the

duplicate check time. While the number of keys

increases 100 times from 1000 to 100000, the total

time spent only increases to 3.81 times and it is noted

that the file size of the experiment is set at a small

level (10MB), the effect would become less

significant in case of larger files.

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 867

Conclusion and Future

In this proposed architecture we have designed a new

notion for removing data deduplication and to

protect the data security through privileges of users

and duplicate check. We had perform various new

deduplication constructions behind authorized

duplicate check in hybrid cloud architecture, in which

the duplicate-check tokens of files are produced by

the private cloud server with private keys. As the

notion in this project we realize a prototype of our

considered authorized duplicate check scheme and

conduct test bed experiments on our prototype. From

this project we show that our sanctioned duplicate

check scheme acquire negligible overhead balance to

convergent encryption and network relocate.

VI. CONCLUS ION

In this paper, we concentrate on the best way to make

the key overhauls as straightforward as could be

expected under the circumstances for the customer

and propose another worldview called distributed

storage reviewing with certain outsourcing of key

redesigns. In this worldview key overhauls can be

securely outsourced to some approved gathering and

along these lines the key-upgrade trouble on the

customer will be kept insignificant. Inparticular, we

influence the outsider inspector (TPA) in numerous

current open examining outline, let it assume the part

of approved gathering for our situation and make it

accountable for both the capacity reviewing and

secure key upgrades for key-presentation resistance.

As of late, key presentation issue in the settings of

distributed storage examining has been proposed and

concentrated on. In this worldview, key redesigns can

be securely outsourced to some approved gathering,

and subsequently the key-overhaul load on the

customer will be kept insignificant. In particular, we

influence the outsider evaluator (TPA) in numerous

current open examining plans, let it assume the part

of approved gathering for our situation, and make it

accountable for both the capacity inspecting and the

safe key upgrades for key-introduction resistance.

Moreover, our plan additionally outfits the customer

with capacity to facilitate confirm the legitimacy of

the scrambled mystery keys gave by TPA. We

formalize the definition and the security model of this

worldview. while the client can further verify the

validity of the encrypted secret keys when

downloading them from the TPA. We give the formal

security proof and the performance simulation of the

proposed scheme.The security confirmation and the

execution reenactment demonstrate that our point by

point plan instantiations are secure and productive.

REFERENCE

[1] [1] M. J. Atallah, K. N. Pantazopoulos, J. R.

Rice, and E. E. Spafford, “Secure outsourcing of

scientific computations,” Adv. Comput., vol.

54,pp. 215–272, 2002.

[2] D. Benjamin and M. J. Atallah, “Private and

cheating-free outsourcing of algebraic

computations,” in Proc. 6th Annu Conf. Privacy,

Secur. Trust, 2008, pp. 240–245.

[3] C. Wang, K. Ren, and J. Wang, “Secure and

practical outsourcing of linear programming in

cloud computing,” in Proc. IEEE INFOCOM,

Apr. 2011, pp. 820–828.

[4] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou,

“New algorithms for secure outsourcing of

modular exponentiations,” in Proc. 17th Eur.

Symp. Res. Comput. Secur., 2012, pp. 541–556.

[5] G. Ateniese et al., “Provable data possession at

untrusted stores,” in Proc. 14th ACM Conf.

Comput. Commun. Secur., 2007, pp. 598–609.

[6] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of

retrievability for large files,” in Proc. 14th ACM

Conf. Comput. Commun. Secur., 2007,pp. 584–

597.

[7] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Advances in Cryptology.

Berlin, Germany: Springer-Verlag, 2008,pp. 90–

107.

[8] G. Ateniese, R. Di Pietro, L. V. Mancini, and G.

Tsudik, “Scalable and efficient provable data

possession,” in Proc. 4th Int. Conf. Secur.

Privacy Commun. Netw., 2008, Art. ID 9.

[9] F. Sebe, J. Domingo-Ferrer, A. Martinez-

balleste, Y. Deswarte, and J. Quisquater,

“Efficient remote data possession checking in

critical information infrastructures, IEEE Trans.

Knowl. Data Eng., vol. 20, no. 8, pp. 1034–

1038, Aug. 2008.

[10] R. Curtmola, O. Khan, R. Burns, and G.

Ateniese, “MR-PDP: Multiple-replica provable

data possession,” in Proc. 28
th

 IEEE Int. Conf.

Distrib. Comput. Syst., Jun. 2008, pp. 411–420.

© May 2018 | IJIRT | Volume 4 Issue 12 | ISSN: 2349-6002

IJIRT 146546 INTERNATIONAL JO URNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 868

[11] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and

S. S. Yau, “Efficient provable data possession

for hybrid clouds,” in Proc. 17th ACM Conf.

Comput. Commun. Secur., 2010, pp. 756–758.

[12] C. Wang, K. Ren, W. Lou, and J. Li, “Toward

publicly auditable secure cloud data storage

services,” IEEE Netw., vol. 24, no. 4, pp. 19–24,

Jul./Aug. 2010.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li,

“Enabling public auditability and data dynamics

for storage security in cloud comput-ing,” IEEE

Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp.

847–859, May 2011.

[14] K. Yang and X. Jia, “Data storage auditing

service in cloud computing: Challenges,

methods and opportunities,” World Wide Web,

vol. 15, no. 4,pp. 409–428, 2012

