An Experimental Analysis on Effect of Pozzolanas on Fibre Reinforced Concrete

Mohammad Mustafa¹, Honey Gaur²

¹Research scholar, Department of Civil Engineering, Kalinga University, Raipur ²Asst. Professor, Department of Civil Engineering, Kalinga University, Raipur

Abstract- In case of Portland slag cement it was observed that using Recron fiber from 0.0% to 0.1% the compressive strength is not incresed, but as the fiber percentage was increased from 0.1% to 0.2% the compressive strength was increased and on further increament of fibre content the strength reduces. The 28 days compressive strength of concrete is higher at with 0.2% fiber compared to other fibre composition but lower than unreinforced concrete. In addition to fiber silica fume was used as a partial replacement to cement. The different percentage of silica fume such as 10%, 20%, 30% replacement was used with 0.2% Recron fiber. The 20% replacement of slag cement with of silica fume gave maximum strength compared to other percentages of replacement, whereas the strength is higer with 30% replacement of silica fume in case of ordinary Portland cement.

Index Terms- Strength, concrete, FRC

INTRODUCTION

In recent years, the terminology "High-Performance Concrete" has been introduced into the construction industry. The American Concrete Institute (ACI) defines high-performance concrete as concrete meeting special combinations of performance and uniformity requirements that cannot always be achieved routinely when using conventional constituents and normal mixing, placing and curing practices. A commentary to the definition states that a high-performance concrete is one in which certain characteristics are developed for a particular application and environment. Examples characteristics that may be considered critical for an application are:

- ➢ Ease of placement
- Compaction without segregation
- ► Early age strength
- Long-term mechanical properties

- Permeability
- Density
- ➢ Heat of hydration
- ➢ Toughness
- ➢ Volume stability
- Long life in severe environments

RESULT AND DISCUSSION

Effect of GGBS in normal consistency of cement:

% of cement replaced by GGBS (%)	Consistency (%)
0	31.0
10	32.0
20	33.0
30	34.5
40	36.5

Effect of GGBS on Compressive strength of cement:

% of GGBS with cement replacement	3 days strength (MPa)	7 days strength (MPa)
0	11.176	24.31
10	9.66	15.63
20	7.117	10.85
30	6.10	9.15
40	4.74	7.46

Effect of RHA on Normal Consistency of cement:

% of cement replaced by RHA	Consistency (%)
0	31.0
10	45.0
20	48.0
30	52.0

Effect of RHA on Compressive strength of cement:

% of cement replaced by RHA	3 days strength (MPa)	7 days strength (MPa)
0	11.176	24.31
20% (RHA I)	2.23	4.74

434

20% (RHA II)	3.65	7.45

Effect of Recron fiber on Compressive strength using slag cement:

Fiber	7 days compressive	28 days
content (%)	strength (N/mm ²)	compressive strength (N/mm ²)
0.0	29.036	37.77
0.1	24.63	27.4067
0.2	26.43	32.148
0.3	17.2	25.48

Effect of recron fiber on Splitting Tensile Strength using slag cement:

Fiber	7 days splitting	28 days splitting
content(%)	tensile strength	tensile strength
	(N/mm^2)	(N/mm^2)
0.0	2.523	2.873
0.1	2.12	2.452
0.2	2.569	3.018
0.3	1.533	2.280

Effect of recron fiber on Flexural Strength using slag cement:

Fiber	7 days flexural	28 days flexural
content(%)	strength (N/mm ²)	strength (N/mm ²)
0.0	5.750	7.75
0.1	5.875	6.33
0.2	6.560	8.04
0.3	4.501	6.04

Effect of silica fume on normal consistency of cement:

% of cement replaced by	Normal consistency (%)
silica fume	
0	31.0
10	38.0
20	41.5
30	45.0

Effect of silica fume on Compressive strength with 0.2% fiber using slag cement:

Silica fume	7 days Compressive	28 days
(%)	strength (N/mm ²)	Compressive
0.0	26.43	32.148
10.0	23.55	30.813
20.0	26.07	34.814
30.0	21.778	29.03

Effect of silica fume on splitting tensile strength with 0.2% fiber using slag cement:

Silica fume	7 days splitting tensile strength (N/mm ²)	28 days splitting tensile
0.0	2.569	3.018
10.0	2.482	2.92
20.0	2.687	3.206
30.0	2.169	2.782

Effect of silica fume on flexural strength with 0.2% fiber using slag cement:

Silica fume	7 days flexural strength	28 days flexural
(%)	(N/mm^2)	strength
0.0	6.56	8.04
10.0	6.50	8.00
20.0	6.625	8.458
30.0	6.04	7.875

CONCLUSION

- In case of Portland slag cement with the use of Recron fiber, the 28 days compressive strength at 0.2% fiber content the result obtained is maximum. The 28 days splitting tensile and flexural strength also increases about 5% at 0.2% fiber content to that of normal concrete. Further if fiber percentage increases then it was seen a great loss in the strength.
- 2) As the replacement of cement with different percentages with Silica fume increases the consistency increases.
- 3) With Portland slag cement keeping 0.2% Recron fiber constant and varying silica fume percentage the compressive, splitting tensile, flexural strength affected remarkably. Using 20% silica fume with 0.2% fiber percentage the 28 days compressive strength increases 7% more than concrete with 0.2% fiber only. 28days split tensile and flexural strength increases further, about 12% and 10% that of normal concrete.
- So it is inculcated that 0.2% Recron fiber and 20% SF is the optimum combination to achive the desired need.
- 5) In case of OPC the compressive strength is increasing as the percentage of silica fume increases from 0-30% and 0.2% Recron fiber and it is about 20% more than strength of normal concrete with OPC.
- 6) The splitting tensile strength increases about 15% at 10% SF and constant 0.2% Recron fiber, then decreases with increasing the SF

percentage. Flexural strength is not giving good indication and goes on decreasing and it is about 40% decrement as the SF percentage increases to 30%.

- Ordinary Portland cement gives good compressive strength result as compared to Portland slag cement in case of mix with SF and 0.2% Recron.
- 8) The capillary absorption coefficient (k) with decreases great sign as SF percentage increases at constant fiber percentage i.e 0.2%. At 20% SF content the k value decreases progressively with 70% reduction that to without SF content concrete.
- The porosity value also decreases as the SF value increases from 0-30% in Recron fiber reinforced concrete.

REFERENCES

- Pierre-Claude Aitcin, "Development in the application of high performance concrete", Construction and Building Material, Vol. 9. No. 1, 1995, 13-17
- [2] Andrzej Ajdukiewicz and Wojciech Radomski, "Trends in the Polish research on highperformance concrete", Cement and Concrete Composite, Vol. 24, 2002, 243-251
- [3] Pierre-Claude Aitcin, "The durability characteristics of high performance concrete", Cement & Concrete Composite, Vol. 25, 2003, 409-420
- [4] Moayad N Al-Khalaf and Hana A Yousif, "Use of Rice husk ash in concrete", The International Journal of Cement Composites and Lightweight Concrete, Vol. 6, November 4 1984.
- [5] Muhammad Soaib Ismail and A. M. Waliuddin, "Effect of rice husk ash on high strength concrete", Construction and Building Material, Vol. 10. No. 7, 1996, 521-526
- [6] Gemma Rodriguez de Sensale, "Strength development of concrete with rice-husk ash", Cement & Concrete Composite, Vol. 28, 2006,158-160
- [7] A Oner & S Akyuz, "An experimental study on optimum usage of GGBS for the compressive strength of concrete", Cement & Concrete Composite, Vol. 29, 2007, 505-514.
- [8] Caijun Shi and Jueshi Qian, "High performance cementing materials from industrial slags",

Resourses Conservation & Recyclin, Vol. 29, 2000, 195-207

[9] K Ganesh Babu and V. Sree Rama Kumar, "Efficiency of GGBS in Concrete", Cement and Concrete Research, Vol. 30, 2000, 1031-1036.