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Abstract- Memories that operate in harsh 

environments, like for example space, suffer a 

significant number of errors. The error correction 

codes (ECCs) are routinely used to ensure that those 

errors do not cause data corruption. However, ECCs 

introduce overheads both in terms of memory bits and 

decoding time that limit speed. In particular, this is an 

issue for applications that require strong error 

correction capabilities. A number of recent works 

have proposed advanced ECCs, such as orthogonal 

Latin squares or difference set codes that can be 

decoded with relatively low delay. The price paid for 

the low decoding time is that in most cases, the codes 

are not optimal in terms of memory overhead and 

require more parity check bits. On the other hand, 

codes like the (24, 12) Golay code that minimize the 

number of parity check bits have a more complex 

decoding. A compromise solution has been recently 

explored for Bose–Chaudhuri–Hocquenghem codes. 

The idea is to implement a fast parallel decoder to 

correct the most common error patterns(single and 

double adjacent) and use a slower serial decoder for 

the rest of the patterns. In this brief, it is shown that 

the same scheme can be efficiently implemented for 

the (24, 12) Golay code. In this case, the properties of 

the Golay code can be exploited to implement a 

parallel decoder that corrects single- and double-

adjacent errors that is faster and simpler than a 

single-error correction decoder. The evaluation results 

using a 65-nm library show significant reductions in 

area, power, and delay compared with the traditional 

decoder that can correct single and double-adjacent 

errors. In addition, the proposed decoder is also able  

to correct some triple-adjacent errors, thus covering 

the most common error patterns. The proposed 

architecture of this paper analysis is the logic size and 

area using Xilinx 14.3. 

Index Terms-Software quality assurance, Software 

engineering. 

I. INTRODUCTION 

The Harsh environments, like space, are a challenge 

for electronic circuits in general and for memories in 

particular. For example, radiation causes several 

types of errors that can disrupt the circuit 

functionality. One common error for SRAM 

memories is soft errors that change the value of one 

or more memory cells. To avoid corruption in the 

data stored in the memory, error correction codes 

(ECCs) are commonly used. ECCs adds parity check 

bits to each memory word to detect and correct 

errors. This requires an encoder to compute those bits 

when writing to the memory and a decoder to detect 

and correct errors when reading from the memory. 

These elements increase the memory area and the 

power consumption, and can also reduce the access 

speed. These overheads increase with the error 

correction capability of the ECC. Traditionally, codes 

that can correct a single bit error per word have been 

used. In particular, single error correction–double 

error detection (SEC–DED) codes that can also detect 

double errors are commonly used. In recent years, the 

number of errors that affect more than one memory 

cell has increased significantly. This is due to the 

scaling of the memory cells and is projected to grow 

further. These errors, known as multiple cells upsets 

(MCUs), pose a challenge for SEC–DED codes. One 

solution to ensure that the MCU errors can be 

corrected is to interleave the bits of different logical 

words so that an MCU affects one bit per word. This 

is based on the observation that the cells affected by 

an MCU are physically close. Interleaving, however, 

has a cost as it complicates the memory design. In 

some space applications, there is an additional issue 

as the number of errors is high, and SEC–DED codes 

may not be sufficient when errors accumulate over 

time. These issues have led to an increased interest 
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on the use of more advanced ECCs to protect SRAM 

memories. As MCUs affect cells that are close 

together, a number of codes that can correct double-

adjacent or triple-adjacent errors have been recently 

proposed. These codes, in many cases, do not require 

additional parity check bits and in the rest require 

only one or two additional bits. The decoding 

complexity increases but in many cases can still be 

implemented with limited impact on the memory 

speed. These codes are useful for applications in 

which the error rate is low; however, when the error 

rate is large, codes that can correct errors on multiple 

independent bits are needed. Research for multibit 

ECCs has focused on reducing the decoding latency 

as in many cases; the traditional decoders are serial 

and require several clock cycles. To some extent this 

can be done for some traditional ECCs by using a 

parallel syndrome decoder butthe decoder complexity 

explodes as the error correction capability or the 

word size increases. Another approach is to use codes 

that can be decoded with low delay, such as 

orthogonal Latin squares (OLSs) or difference set 

(DS) codes. In the case of OLS codes, the main issue 

is that they are not optimal in terms of the number of 

parity check bits and thus require more memory 

overhead. The DS codes are more competitive in 

terms of parity check bits but are still not optimal for 

some word lengths. For example, the (21, 10) DS 

code can correct 2-bit errors while a code with a 

similar block size and code rate, and the (24, 12) 

extended Golay code can correct 3-bit errors. 

However, the Golay code requires a more complex 

decoder that needs several clock cycles. Namba et al. 

Have proposed a compromise solution for Bose–

Chaudhuri–Hocquenghem codes. The idea is that the 

most common error patterns are decoded in parallel 

and the rest serially. In particular, single and double-

adjacent errors are corrected in a single clock cycle. 

This means that the most memory accesses can be 

completed in a single clock cycle, and only a small 

percentage of the words in error require a full serial 

decoding. This can enable the use of traditional ECCs 

that do not support fast parallel decoding to protect 

SRAM memories In this brief, the use of the scheme 

in  is considered for the (24,12) Golay code. In more 

detail, an efficient parallel decoder capable of 

correcting the single and double-adjacent errors is 

presented. The decoder exploits the properties of the 

Golay code to reduce the implementation cost. This 

result in a decoder that is simpler than a traditional 

SEC decoder but that can also correct all double-

adjacent errors and some triple-adjacent errors. The 

proposed decoder has been implemented in hardware 

description language and mapped to a 65- nm 

technology to show its benefits. The main 

contribution of this brief is to enable a fast and 

efficient parallel correction of the single and double-

adjacent errors in the (24, 12) Golay code.

 

 

Fig. Parity check matrix of the (24, 12) Golay Code 

with the proposed bit placement 

II. PRELIMINARIES 

The ECCs add parity check bits to each memory 

word to detect and correct errors. This requires an 

encoder to compute those bits when writing to the 

memory and a decoder to detect and correct errors 

when reading from the memory. These elements 

increase the memory area and the power 

consumption, and can also reduce the access speed. 

These overheads increase with the error correction 

capability of the ECC. Traditionally, codes that can 

correct a single bit error 

per word have been used. In particular, single error  

correction–double error detection (SEC–DED) codes 

that can also detect double errors are commonly used. 

 

The use of the scheme is considered for the(24,12) 

Golay code. In more detail, an efficient parallel 

decoder capable of correcting the single and double-

adjacent errors is presented.The decoder exploits the 

properties of the Golay code to reduce the 

implementation cost. This results in a decoder that is 

simpler than a traditional SEC decoder but that can 

also correct all double-adjacent errors and some 

triple-adjacent errors. The proposed decoder has been 
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implemented in hardware description language and 

mapped to a 65-nm technology to show its benefits. 

The main contribution of this brief is to enable a fast 

and efficient parallel correction of the single and 

double-adjacent errors in the (24,12) Golay code. 

 

ERROR CORRECTION AND DETECTION: 

In information theory and coding theory with 

applications in computer science and 

telecommunication, error detection and correction or 

error control are techniques that enable reliable 

delivery of digital data over unreliable 

communication channels. Many communication 

channels are subject to channel noise, and thus errors 

may be introduced during  

 

Transmission from the source to a receiver. Error 

detection techniques allow detecting such errors, 

while error correction enables reconstruction of the 

original data in many cases. The general definitions 

of the terms are as follows: 

•Error detection is the detection of errors caused by 

noise or other impairments during TRANSMISSION 

from the transmitter to the receiver. 

•Error correction is the detection of errors and 

reconstruction of the original, error-free data 

 

OVERVIEW: 

 

The general idea for achieving error detection and 

correction is to add some redundancy (i.e., some 

extra data) to a message, which receivers can use to 

check consistency of the delivered message, and to 

recover data determined to be corrupted. Error-

detection and correction schemes can be either 

systematic or non-systematic: In a systematic 

scheme, the transmitter sends the original data, and 

attaches a fixed number of check bits (or parity data), 

which are derived from the data bits by some 

deterministic algorithm. If only error detection is 

required, a receiver can simply apply the same 

algorithm to the received data bits and compare its 

output with the received check bits; if the values do 

not match, an error has occurred at some point during 

the transmission. In a system that uses a non-

systematic code, the original message is transformed 

into an encoded message that has at least as many 

bits as the original message. Good error control 

performance requires the scheme to be selected based 

on the characteristics of the communication channel. 

Common channel models include memory-less 

models where errors occur randomly and with a 

certain probability, and dynamic models where errors 

occur primarily in bursts. Consequently, error-

detecting and correcting codes can be generally 

distinguished between random-error-

detecting/correcting and burst-error-

detecting/correcting. Some codes can also be suitable 

for a mixture of random errors and burst errors . If the 

channel capacity cannot be determined, or is highly 

variable, an error-detection scheme may be combined 

with a system for retransmissions of erroneous data. 

This is known as automatic repeat request (ARQ), 

and is most notably used in the Internet. An alternate 

approach for error control is hybrid automatic repeat 

request (HARQ), which is a combination of ARQ and 

error-correction coding. 

 

IMPLEMENTATION: 

 

Error correction may generally be realized in two 

different ways: 

 

Automatic repeat request (ARQ) (sometimes also 

referred to as backward error correction): This is an 

error control technique whereby an error detection 

scheme is combined with requests for retransmission 

of erroneous data. Every block of data received is 

checked using the error detection code used, and if 

the check fails, retransmission of the data is requested 

– this may be done repeatedly, until the data can be 

verified. 

 

Forward error correction (FEC): The sender encodes 

the data using an error-correcting code (ECC) prior to 

transmission. The additional information 

(redundancy) added by the code is used by the 

receiver to recover the original data. In general, the 

reconstructed data is what is deemed the "most 

likely" original data. 

 

ARQ and FEC may be combined, such that minor 

errors are corrected without retransmission, and 

major errors are corrected via a request for 

retransmission: this is called hybrid automatic repeat-

request (HARQ) 

 

III. IMPORTANCE OF HDLS 
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HDLs have many advantages compared to traditional 

schematic-based design.  

•Design can be described at a very abstract level by 

us of HDLs.Designers can write their RTL 

description without choosing a specific fabrication 

technology. Logic synthesis tools can automatically 

convert the design to any fabrication technology. If a 

new technology emerges, designers do not need to 

redesign their circuit. They simply input the RTL 

description to the logic synthesis tool and create a 

new gate level netlist,using the new fabrication 

technology. The logic synthesis tool will optimize the 

circuit in area and timing for the new technology. 

•By describing designs in HDLs,functional 

verification of the design can be done early in the 

design cycle. Since designers work at the RTL level, 

they can optimize and modify the RTL description 

until it meets the desired functionality. Most design 

bugs are eliminated at this point. This cuts down 

design cycle time significantly because the 

probability of hitting a functional bug at a later time 

in the gate-level netlist or physical layout is 

minimized. 

•Designing with HDLs is analogous to computer 

programming. A textual description with comments 

is an easier way to develop and debug circuits. This 

also provides a concise representation of the design, 

compared to gate-level schematics. Gate-level 

schematics are almost incomprehensible for very 

complex designs. 

•HDL-based designs are here to stay. With rapidly 

increasing complexities of digital circuits and 

increasingly sophisticated EDA tools,HDLs are now 

the dominant method for large digital designs. No 

digital circuit designer can afford to ignore HDL 

based design. 

 

Verilog HDL has evolved as a standard hardware 

description language. Verilog HDL offers many 

useful features 

•Verilog HDL is a general-purpose hardware 

description language that is easy to learn and easy to 

use. It is similar in syntax to the C programming 

language. Designers with C programming experience 

will find it easy to learn Verilog HDL. 

•Verilog HDL allows different levels of abstraction to 

be mixed in the same model. Thus, a des igner can 

define a hardware model in terms of switches, gates, 

RTL, or behavioral code. Also, a designer needs to 

learn only one language for stimulus and hierarchical 

design. 

•Most popular logic synthesis tools support Verilog 

HDL. This makes it the language of choice for 

designers. 

•All fabrication vendors provide Verilog HDL 

libraries for post logic synthesis simulation. Thus, 

designing a chip in Verilog HDL allows the widest 

choice of vendors. 

•The Programming Language Interface (PLI) is a 

powerful feature that allows the user to write custom 

C code to interact with the internal data structures of 

Verilog. Designers can customize a Verilog HDL 

simulator to their needs with the PLI. 

 

•The speed and complexity of digital circuits have 

increased rapidly. Designers have responded by 

designing at higher levels of abstraction. Designers 

have to think only in terms of functionality. EDA 

tools take care of the implementation details. With 

designer assistance, EDA tools have become 

sophisticated enough to achieve a close-to-optimum 

implementation. 

•The most popular trend currently is to design in 

HDL at an RTL level, because logic synthesis tools 

can create gate-level net lists from RTL level design. 

Behavioral synthesis allowed engineers to design 

directly in terms of algorithms and the behavior of 

the circuit, and then use EDA tools to do the 

translation and optimization in each phase of the 

design.  

•However, behavioral synthesis did not gain 

widespread acceptance. Today, RTL design continues 

to be very popular. Verilog HDL is also being 

constantly enhanced to meet the needs of new 

verification methodologies. 

•Formal verification and assertion checking 

techniques have emerged. Formal verification applies 

formal mathematical techniques to verify the 

correctness of Verilog HDL descriptions and to 

establish equivalency between RTL and gate-level 

net lists. However, the need to describe a design in 

Verilog HDL will not go away. Assertion checkers 

allow checking to be embedded in the RTL code. 

This is a convenient way to do checking in the most 

important parts of a design. 

•New verification languages have also gained rapid 

acceptance. These languages combine the parallelism 
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and hardware constructs from HDLs with the object 

oriented nature of C++. These languages also provide 

support for automatic stimulus creation, checking, 

and coverage. However, these languages do not 

replace Verilog HDL. They simply boost the 

productivity of the verification process. Verilog HDL 

is still needed to describe the design. 

•For very high-speed and timing-critical circuits like 

microprocessors, the gate-level netlist provided by 

logic synthesis tools is not optimal. In such cases, 

designers often mix gate-level description directly 

into the RTL description to achieve optimum results. 

This practice is opposite to the high-level design 

paradigm, yet it is frequently used for high-speed 

designs because designers need to squeeze the last bit 

of timing out of circuits, and EDA tools sometimes 

prove to be insufficient to achieve the desired results. 

•Another technique that is used for system-level 

design is a mixed bottom-up methodology where the 

designers use either existing Verilog HDL modules, 

basic building blocks, or vendor-supplied core blocks 

to quickly bring up their system simulation. This is 

done to reduce development costs and compress 

design schedules. For example, consider a system 

that has a CPU, graphics chip, I/O chip, and a system 

bus.  

•The CPU designers would build the next-generation 

CPU themselves at an RTL level, but they would use 

behavioral models for the graphics chip and the I/O 

chip and would buy a vendor-supplied model for the 

system bus. Thus, the system-level simulation for the 

CPU could be up and running very quickly and long 

before the RTL descriptions for the graphics chip and 

the I/O chip are completed. 

 

 

 

TYPICAL DESIGN FLOW: 

 

A typical design flow for designing VLSI-IC circuits 

show the level of design representation shaded blocks 

show processes in the design flow. The design flow 

used by designers who use HDLs. In any design, 

specifications are written first. Specifications 

describe abstractly the functionality, interface, and 

overall architecture of the digital circuit to be 

designed. At this point, the architects do not need to 

think about how they will implement this circuit. A 

behavioral description is then created to analyze the 

design in terms of functionality, performance, and 

compliance to standards, and other high-level issues. 

Behavioral descriptions are often written with HDLs. 

The behavioral description is manually converted to 

an RTL description in an HDL. 

 
Fig. Typical Design Flow 

Logic synthesis tools convert the RTL description to 

a gate-level net list. A gate-level net list is a 

description of the circuit in terms of gates and 

connections between them. Logic synthesis tools 

ensure that the gate-level net list meets timing, area, 

and power specifications. The gate-level net list is 

input to an Automatic Place and Route tool, which 

creates a layout. The layout is verified and then 

fabricated on a chip. 

 

Thus, most digital design activity is concentrated on 

manually optimizing the RTL description of the 

circuit. After the RTL description is frozen, EDA 

tools are available to assist the designer in further 

processes. Designing at the RTL level has shrunk the 

design cycle times from years to a few months. It is 

also possible to do many design iterations in a short 

period of time. Behavioral synthesis tools have begun 

to emerge recently. These tools can create RTL 

descriptions from a behavioral or algorithmic 

description of the circuit. As these tools mature, 

digital circuit design will become similar to high-

level computer programming. Designers will simply 

implement the algorithm in an HDL at a very abstract 

level. EDA tools will help the designer convert the 

behavioral description to a final IC chip. 

 

It is important to note that, although EDA tools are 

available to automate the processes and cut design 

cycle times, the designer is still the person who 

controls how the tool will perform. EDA tools are 

also susceptible to the "GIGO : Garbage In Garbage 

Out" phenomenon. If used improperly, EDA tools 

will lead to inefficient designs. Thus, the designer 

still needs to understand the nuances of design 
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methodologies, using EDA tools to obtain an 

optimized design. 

 

IV. (24, 12) EXTENDED GOLAY CODE 

 

The (24, 12) extended Golay code is obtained by 

adding an overall parity check bit to the (23, 12) 

Golay code. This code is a perfect code with a 

minimum distance of seven and has been widely 

studied. The extended code has a minimum distance 

of eight, and therefore can correct 3-bit errors and 

detect 4-bit errors. It has been used in many 

applications including space missions that require 

strong error correction capabilities. The decoding of 

the Golay code is done in a series of steps, and 

requires several clock cycles. For example, 27 clock 

cycles are needed in the implementation presented in. 

This, as discussed before, is not suitable for SRAM 

protection. To the best of our knowledge, no SEC-

DAEC parallel decoder optimized for the Golay code 

has been proposed in the literature. The parity check 

matrix of the (24, 12) Golay code is shown in Fig. 1. 

The 12 first bits correspond to the parity check bits 

and last 12 to the data bits. A single-error correcting 

parallel decoder can be implemented by computing 

the syndrome and comparing in parallel with the 12 

data bit and the 12 check bit columns. When there is 

a match that bit is corrected. The requirement for 

SEC is that the columns must be different. Therefore, 

it would seem possible to use a subset of the parity 

bits to decode single errors. However, since the code 

can correct three errors, we need to ensure that the 

single-error parallel decoder does not introduce 

erroneous corrections in the presence of multiple bit 

errors. For example, if we use an SEC-DAEC code 

with a minimum distance of four, a triple error can 

cause a mis correction in the SEC-DAEC decoding 

phase. A 4-bit error may not be even detected by the 

SEC-DAEC decoder. Therefore, the full syndrome is 

used for comparisons in all the cases to ensure that 

triple errors do not trigger miscorrections and 4-bit 

errors are detected. 

 

Proposed sec-daec parallel decoder: 

The existing SEC-DAEC decoders are 

similar to SEC decoders but they need to check also 

the syndrome values that correspond double adjacent 

errors. This requires roughly doubling the number of 

comparisons. Then, the correction of each bit is 

triggered by three syndrome values (the single bit and 

the two double adjacent). This results in a decoder 

that is significantly more complex than a simple SEC 

decoder. The proposed parallel decoder as discussed 

before has the objective of correcting single and 

double-adjacent bit errors. The first step is to place 

the bits in the memory such that data and parity bits 

are interleaved, as shown in Fig. 2. This interleaving 

has no impact on memory performance, as it is a 

simple remapping of the bits when they are read from 

or written to the memory. Let us now consider the 

syndrome values for an error on the second bit (first 

data bit), a double adjacent on bits one and two, a 

double adjacent on bits two and three, and a triple 

adjacent on bits one, two, and three. In all those 

cases, bit two should be corrected. The syndrome 

values for those error patterns are shown in Fig. 3. 

The interesting observation is that the first two rows 

are the only ones that change from one pattern to 

another and that the values cover the four possible 

combinations of the first two bits. This means that the 

decoding can be done by simply comparing the 

remaining ten bits with the last ten bits of the 

syndrome. If they match, then the second bit (first 

data bit) has to be corrected. It can be observed that 

the same reasoning applies to the rest of the data bits, 

except the last one. For the last bit, there are only two 

values to check (single and double adjacent with bit 

23). In this case, it is easy to see that this can be done 

by checking the first 11 bits only. The previous 

discussion shows how parallel decoding can be 

efficiently implemented. In fact, the proposed parallel 

decoder will be simpler than an SEC decoder. Table I 

summarizes the comparators needed for each of the 

different decoders. A comparator is needed for each 

syndrome value that triggers a correction. For an SEC 

code, this is simply 24 while for a traditional SEC-

DAEC code is 47. In the case of the proposed 

decoder, 12 comparators cover both single bit errors 

on the data bits and double adjacent bit errors, and 

another 12 are needed to cover single errors on the 

check bits giving a total of 24. It can be observed that 

the proposed decoder needs less comparator and also 

less bits in some of them. Both factors help to reduce 

the decoder complexity. In Section IV, the benefits 

will be evaluated for a design mapped to a 65-nm 

technology. The proposed parallel decoder also has to 

detect errors that it cannot correct. In those cases, the 

serial decoder must be used to correct the error. The 

logic needed to detect those errors is simply a check 

for a no zero syndrome and a check that none of the 

comparators has detected a match. The first part can 

be implemented with a 12-input OR gate and the 

second with another 24-input OR gate. It should be 

noted that the same idea can be partly applied to 

other triple ECCs even if the number of parity check 

and data bits is not the same. In more detail, when 

there are more data bits, the first data bits can also be 

interleaved with parity bits and decoded with the 

proposed scheme, while for the rest, a traditional 

SEC-DAEC decoding can be used. The application of 

the proposed scheme to other codes is left for future 
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work. 

  

Fig. Example syndrome values for errors that effects 

first data bit in the proposed bit placement  

 

V.SIMULATION TOOLS 

 

 
 

 
 

 
 

 

The below figure shows the behavioral simulation of 

the synthesized design. 

 
 

 
 

 
 

 
Fig: Simulation Result 

 

VI. CONCLUSION 

In this brief, a single and double-adjacent error 

correcting parallel decoder for the (24, 12) extended 

Golay code has been proposed. The decoder uses the 

properties of the code to achieve an efficient 

implementation. In fact, the proposed decoder is not 
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only much simpler than a traditional SEC-DAEC 

decoder, but also simpler than a standard SEC 

decoder for the Golay code. To evaluate the benefits 

of the new decoder, it has been implemented in HDL 

and mapped to a 65-nm library. The results confirm 

that significant reductions in area, delay, and power 

consumption can be obtained compared with the 

traditional SEC-DAEC decoder. The new SEC-

DAEC parallel decoder can be used in conjunction 

with a serial decoder so that the most common error 

patterns are corrected in one clock cycle 
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