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Abstract—A Bloom Filter (BF) is a data structure 

compatible for performing set membership queries very 

effectively. A standard Bloom Filter representing a set of 

n elements is generated by using an array of m bits and 

uses k unbiased hash functions. Bloom Filters have some 

attractive properties together with low storage 

requirement, fast membership checking and no false 

negatives. False positives are viable however their 

probability is also managed and significantly lowered 

depending upon the application standards. Our main 

contributions are exploring the design space and the 

evaluation of a series of extensions (1) to increase the 

practicality and performance of iBFs, (2) to enable false-

negative-free element deletion, and (3) to provide 

security enhancements.. The proposed scheme may also 

be of interest in useful designs to without difficulty 

mitigate mistakes with a lowered overhead in terms of 

circuit area and power. 

Index Terms—Bloom filters (BFs), error correction, soft 

errors. 

I. INTRODUCTION 

Recent advances in next-generation sequencing (NGS) 

technologies have made it possible to rapidly generate 

high-throughput data at a much lower cost than 

traditional Sanger sequencing technology. NGS 

technologies enable cost-efficient genomic 

applications, including de novo assembly of many 

non-model organisms, identifying functional elements 

in genomes, and finding variations within a 

population. A Bloom Filter is an area effective 

probabilistic data constitution which is used to 

symbolize a collection and participate in membership 

queries [1] i.e. To query whether or not an element is 

a member of the set or now not. The Bloom Filter data 

structure used to be offered through Burton H. Bloom 

[2] in 1970. A Bloom Filter occupies negligible space 

in comparison with the entire set. Space saving comes 

on the cost of false positives however this difficulty 

does not affect the processing of data if the chance of 

an error is made sufficiently low. Bloom Filters 

normally find applications in instances that involve 

making a choice on membership of an aspect for a 

sufficiently huge set in small period of time. Today, 

Bloom Filters are utilized in vast variety of 

applications together with spell checking, network 

traffic routing and monitoring, database search, 

differential file updating, allotted community caches, 

and textual analysis. In this paper we will be able to 

describe bloom filter, its editions and its functions in 

unique areas of computer science. 

II. LITERATURE REVIEW 

In this work, we focus on the subset of distributed 

networking applications that use packet-header-size 

Bloom filters to share some state (i.e. information set 

S) among network nodes. The specific state carried in 

the Bloom filter varies from application to application, 

ranging from secure credentials to IP prefixes and link 

identifiers, with the shared requirement of a fixed-size 

packet header data structure to efficiently verify set 

memberships. The commonality of recent inter-

networking proposals is relying on Bloom filters to 

move application state to the packets themselves in 

order to alleviate system bottlenecks (e.g. IP multicast, 

source routing overhead), enable new in-network 

applications (e.g. security) or stateless protocol 

designs.  

We refer to the BF used in this type of applications as 

an in-packet Bloom filter (iBF). In a way, an iBF 

follows a reverse approach compared to a traditional 

standalone BF implementation: iBFs can be issued, 

queried, and modified by multiple network entities at 

packet processing time. These specific needs benefit 

from additional capabilities like element removals or 

security enhancements. Moreover, careful design 

considerations are required to deal with the potential 

effects of false positives, as every packet header bit 
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counts and the actual performance of the distributed 

system is a key goal In this article, we present a new 

Bloom filter-based error correction algorithm, known 

as BLESS. BLESS belongs to the k-mer spectrum-

based method, but it is designed to cast off the 

aforementioned limitations that previous k-mer 

spectrum-situated options had. Our new procedure has 

three main new points: 

(1) BLESS is designed to target high memory 

efficiency for error correction to be run on a 

commodity laptop. The k-mers that exist more than a 

specific number of occasions in reads are sorted out 

and programmed into a Bloom filter. 

(2) BLESS can handle repeats in genomes higher than 

earlier k-mer spectrum-based methods, which results 

in better accuracy. This is since BLESS is in a position 

to make use of longer k-mers in comparison with prior 

methods. Longer k-mers untangle repeats better. 

(3) BLESS can extend reads to proper mistakes at the 

finish of reads as thoroughly as other constituents of 

the reads. Usually an inaccurate k-mer is also 

recognized as an error-free one due to the fact that of 

an irregularly tremendous multiplicity of the k-mer. 

False positives from the Bloom filter may additionally 

rationale the same difficulty. BLESS extends the reads 

to search out multiple k-mers that cover the inaccurate 

bases on the end of the reads to give a boost to error 

correction on the finish of the reads. 

In this section we explore and describe variants of 

Bloom Filter [5] built on the Standard Bloom Filter 

data structure. 

The Standard Bloom Filter works fine when the 

members of the set do not change over time. Addition 

of elements only requires hashing the additional item 

and setting the corresponding bit locations in the array. 

However, deletion is not possible in the Standard 

Bloom Filter since it will require setting 0’s in the 

array to already set 1’s that was result of hashing 

another item which is still a member of the set. 

The Variable Increment Counting Bloom Filter (VI – 

Bloom) [7] is a generalization of the Counting Bloom 

Filter that uses variable increments to update each 

entry. In this structure, a set of possible variable 

increments are defined. For each counter update by an 

element we hash the element into the variable 

increment set and use it to increment the counter. 

Similarly, to delete an element we decrement by its 

hashed value in the variable increment set. 

A Scalable Bloom Filters consist of two or more 

Standard Bloom Filters, allowing arbitrary growth of 

the set being represented. When one Bloom Filter gets 

filled due to the limit on the fill ratio, a new filter is 

added. Querying an element involves testing the 

presence in each filter. 

III. METHODOLOGY 

The proposed scheme is based on the statement that a 

CBF, additionally to a structure that permits rapid 

membership check to an element set, can also be in a 

technique a redundant illustration of the element set. 

Therefore, this redundancy might in all probability be 

used for error detection and correction. To discover 

this concept, common implementations of CBFs 

where the elements of the set are saved in a sluggish 

memory and the CBF is saved in turbo memories are 

regarded. In specified, it's assumed that the elements 

of the set are saved in DRAM whilst the CBF is saved 

in a cache [10]. The reasoning behind that is that the 

CBF is accessed typically and wants a quick access 

time to maximize efficiency, at the same time the 

elements of the set are only accessed when factors are 

learn, added or eliminated and therefore the entry time 

is no longer an obstacle. It should also be noted that 

after the whole aspect set is stored in a slow memory, 

no unsuitable deletions can arise as they could be 

detected when taking away the element from the slow 

memory. 

A.  Simple Procedure for the Correction of Errors in 

the Element Set: 

To propose the simple correction system, allow us to 

count on that a single bit error impacts detail x and that 

it's detected using the parity bit. Hence, xe is read from 

the reminiscence. The right worth x has to be xe if the 

error affected the parity bit. If the error affected the ith 

data bit, the correct value can be xem(i) the place xem(i) 

is the value read (xe) with the ith bit inverted. To assess 

which of these is actually the right value x, the 

candidates [xe and all the xem(i)] can be verified for 

membership to the CBF. If most effective one of the 

candidates is located within the CBF, then no false 

positives have come about and the value observed is 

the correct one. Rather, if more than one candidate is 

observed, the approach is unable to seek out the right 

worth due to the occurrence of false positives. This 

straightforward and quick method requires handiest l 

+ 1 queries to the CBF, where l is the quantity of bits 

in each aspect of the set. However, the correction 
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expense that can be carried out is dependent upon the 

false positive price of the CBF. In detailed, the chance 

that an error can be corrected using this procedure can 

be approximated as 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≅ (1 − 𝑝𝑓𝑝)
𝑙 

which is the probability that none of the l candidates 

that are not x return a false positive on a query. 

 

B. Advanced Procedure for the Correction of Errors in 

the Element Set 

When the simple system described above correct error, 

a supplementary developed method can be utilized. 

The correction approach starts by means of making a 

replica of the CBF in DRAM memory. Then, all of the 

factors within the set besides for the erroneous one are 

removed from the CBF. This will go away a CBF with 

simplest the values that correspond to the original 

worth of the element x. Once that's executed, the 

candidates [xe and all the xem (i)] may also be queried 

over the CBF that has best x as an entry. As in the prior 

approach, if most effective probably the most 

candidates suit the CBF, that is the correct value. If 

more than one candidate suits the CBF then the error 

can't be corrected. The likelihood that a given price x 

and yet another price y produce precisely the same 

values of the hash capabilities h1, h2... hk can also be 

approximated as 

𝑃𝐶𝐵𝐹(𝑥) = 𝐶𝐵𝐹(𝑦) ≅
𝑘!

𝑚𝑘
 

Therefore, the correction probability for this advanced 

procedure can be approximated as 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≅ (1 −
𝑘!

𝑚𝑘
) 

So that they can be very just about one hundred% in 

lots of sensible eventualities as m is in general huge. 

The accelerated correction rate comes on the cost of an 

additional complex correction method that wants the 

replication of the CBF, the removal of the entire 

entries besides the erroneous one (n−1), and sooner or 

later the query for the l + 1 candidates. However, as 

soft error are infrequent events, and the process is only 

wanted when the straightforward approach provided 

earlier than are not able to correct an error, the scheme 

may also be valuable in real purposes. 

 

 

 

 

IV. RESULTS AND DISCUSSIONS 

 
Fig.1 Simulation output 

 
Fig.2 RTL Schematic. 

 
Fig.3 Technology Schematic. 

 

V. CONCLUSION 

This paper explores an exciting front in the Bloom 

filter research space, namely the special category of 

small Bloom filters carried in packet headers. The 

configuration regarded on this temporary is that of a 

memory included with a per phrase parity bit for 

which it is confirmed that the CBF can be utilized to 

gain single bit error correction. This suggests how 

present CBFs can be used to gain error correction in 
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addition to perform their normal membership 

checking function. 
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