
© February 2016 | IJIRT | Volume 2 Issue 9 | ISSN: 2349-6002

IJIRT 144340 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 152

A Different approach of Bloom Filters for Error Detection

and Correction

B. Ramesh 1, G. Kishore Kumar 2
1,2Assistant Professor©, Dept.of ECE, University College of Engineering (A), Osmania University,

Telangana,

Abstract—A Bloom Filter (BF) is a data structure

compatible for performing set membership queries very

effectively. A standard Bloom Filter representing a set of

n elements is generated by using an array of m bits and

uses k unbiased hash functions. Bloom Filters have some

attractive properties together with low storage

requirement, fast membership checking and no false

negatives. False positives are viable however their

probability is also managed and significantly lowered

depending upon the application standards. Our main

contributions are exploring the design space and the

evaluation of a series of extensions (1) to increase the

practicality and performance of iBFs, (2) to enable false-

negative-free element deletion, and (3) to provide

security enhancements.. The proposed scheme may also

be of interest in useful designs to without difficulty

mitigate mistakes with a lowered overhead in terms of

circuit area and power.

Index Terms—Bloom filters (BFs), error correction, soft

errors.

I. INTRODUCTION

Recent advances in next-generation sequencing (NGS)

technologies have made it possible to rapidly generate

high-throughput data at a much lower cost than

traditional Sanger sequencing technology. NGS

technologies enable cost-efficient genomic

applications, including de novo assembly of many

non-model organisms, identifying functional elements

in genomes, and finding variations within a

population. A Bloom Filter is an area effective

probabilistic data constitution which is used to

symbolize a collection and participate in membership

queries [1] i.e. To query whether or not an element is

a member of the set or now not. The Bloom Filter data

structure used to be offered through Burton H. Bloom

[2] in 1970. A Bloom Filter occupies negligible space

in comparison with the entire set. Space saving comes

on the cost of false positives however this difficulty

does not affect the processing of data if the chance of

an error is made sufficiently low. Bloom Filters

normally find applications in instances that involve

making a choice on membership of an aspect for a

sufficiently huge set in small period of time. Today,

Bloom Filters are utilized in vast variety of

applications together with spell checking, network

traffic routing and monitoring, database search,

differential file updating, allotted community caches,

and textual analysis. In this paper we will be able to

describe bloom filter, its editions and its functions in

unique areas of computer science.

II. LITERATURE REVIEW

In this work, we focus on the subset of distributed

networking applications that use packet-header-size

Bloom filters to share some state (i.e. information set

S) among network nodes. The specific state carried in

the Bloom filter varies from application to application,

ranging from secure credentials to IP prefixes and link

identifiers, with the shared requirement of a fixed-size

packet header data structure to efficiently verify set

memberships. The commonality of recent inter-

networking proposals is relying on Bloom filters to

move application state to the packets themselves in

order to alleviate system bottlenecks (e.g. IP multicast,

source routing overhead), enable new in-network

applications (e.g. security) or stateless protocol

designs.

We refer to the BF used in this type of applications as

an in-packet Bloom filter (iBF). In a way, an iBF

follows a reverse approach compared to a traditional

standalone BF implementation: iBFs can be issued,

queried, and modified by multiple network entities at

packet processing time. These specific needs benefit

from additional capabilities like element removals or

security enhancements. Moreover, careful design

considerations are required to deal with the potential

effects of false positives, as every packet header bit

© February 2016 | IJIRT | Volume 2 Issue 9 | ISSN: 2349-6002

IJIRT 144340 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 153

counts and the actual performance of the distributed

system is a key goal In this article, we present a new

Bloom filter-based error correction algorithm, known

as BLESS. BLESS belongs to the k-mer spectrum-

based method, but it is designed to cast off the

aforementioned limitations that previous k-mer

spectrum-situated options had. Our new procedure has

three main new points:

(1) BLESS is designed to target high memory

efficiency for error correction to be run on a

commodity laptop. The k-mers that exist more than a

specific number of occasions in reads are sorted out

and programmed into a Bloom filter.

(2) BLESS can handle repeats in genomes higher than

earlier k-mer spectrum-based methods, which results

in better accuracy. This is since BLESS is in a position

to make use of longer k-mers in comparison with prior

methods. Longer k-mers untangle repeats better.

(3) BLESS can extend reads to proper mistakes at the

finish of reads as thoroughly as other constituents of

the reads. Usually an inaccurate k-mer is also

recognized as an error-free one due to the fact that of

an irregularly tremendous multiplicity of the k-mer.

False positives from the Bloom filter may additionally

rationale the same difficulty. BLESS extends the reads

to search out multiple k-mers that cover the inaccurate

bases on the end of the reads to give a boost to error

correction on the finish of the reads.

In this section we explore and describe variants of

Bloom Filter [5] built on the Standard Bloom Filter

data structure.

The Standard Bloom Filter works fine when the

members of the set do not change over time. Addition

of elements only requires hashing the additional item

and setting the corresponding bit locations in the array.

However, deletion is not possible in the Standard

Bloom Filter since it will require setting 0’s in the

array to already set 1’s that was result of hashing

another item which is still a member of the set.

The Variable Increment Counting Bloom Filter (VI –

Bloom) [7] is a generalization of the Counting Bloom

Filter that uses variable increments to update each

entry. In this structure, a set of possible variable

increments are defined. For each counter update by an

element we hash the element into the variable

increment set and use it to increment the counter.

Similarly, to delete an element we decrement by its

hashed value in the variable increment set.

A Scalable Bloom Filters consist of two or more

Standard Bloom Filters, allowing arbitrary growth of

the set being represented. When one Bloom Filter gets

filled due to the limit on the fill ratio, a new filter is

added. Querying an element involves testing the

presence in each filter.

III. METHODOLOGY

The proposed scheme is based on the statement that a

CBF, additionally to a structure that permits rapid

membership check to an element set, can also be in a

technique a redundant illustration of the element set.

Therefore, this redundancy might in all probability be

used for error detection and correction. To discover

this concept, common implementations of CBFs

where the elements of the set are saved in a sluggish

memory and the CBF is saved in turbo memories are

regarded. In specified, it's assumed that the elements

of the set are saved in DRAM whilst the CBF is saved

in a cache [10]. The reasoning behind that is that the

CBF is accessed typically and wants a quick access

time to maximize efficiency, at the same time the

elements of the set are only accessed when factors are

learn, added or eliminated and therefore the entry time

is no longer an obstacle. It should also be noted that

after the whole aspect set is stored in a slow memory,

no unsuitable deletions can arise as they could be

detected when taking away the element from the slow

memory.

A. Simple Procedure for the Correction of Errors in

the Element Set:

To propose the simple correction system, allow us to

count on that a single bit error impacts detail x and that

it's detected using the parity bit. Hence, xe is read from

the reminiscence. The right worth x has to be xe if the

error affected the parity bit. If the error affected the ith

data bit, the correct value can be xem(i) the place xem(i)

is the value read (xe) with the ith bit inverted. To assess

which of these is actually the right value x, the

candidates [xe and all the xem(i)] can be verified for

membership to the CBF. If most effective one of the

candidates is located within the CBF, then no false

positives have come about and the value observed is

the correct one. Rather, if more than one candidate is

observed, the approach is unable to seek out the right

worth due to the occurrence of false positives. This

straightforward and quick method requires handiest l

+ 1 queries to the CBF, where l is the quantity of bits

in each aspect of the set. However, the correction

© February 2016 | IJIRT | Volume 2 Issue 9 | ISSN: 2349-6002

IJIRT 144340 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 154

expense that can be carried out is dependent upon the

false positive price of the CBF. In detailed, the chance

that an error can be corrected using this procedure can

be approximated as

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≅ (1 − 𝑝𝑓𝑝)
𝑙

which is the probability that none of the l candidates

that are not x return a false positive on a query.

B. Advanced Procedure for the Correction of Errors in

the Element Set

When the simple system described above correct error,

a supplementary developed method can be utilized.

The correction approach starts by means of making a

replica of the CBF in DRAM memory. Then, all of the

factors within the set besides for the erroneous one are

removed from the CBF. This will go away a CBF with

simplest the values that correspond to the original

worth of the element x. Once that's executed, the

candidates [xe and all the xem (i)] may also be queried

over the CBF that has best x as an entry. As in the prior

approach, if most effective probably the most

candidates suit the CBF, that is the correct value. If

more than one candidate suits the CBF then the error

can't be corrected. The likelihood that a given price x

and yet another price y produce precisely the same

values of the hash capabilities h1, h2... hk can also be

approximated as

𝑃𝐶𝐵𝐹(𝑥) = 𝐶𝐵𝐹(𝑦) ≅
𝑘!

𝑚𝑘

Therefore, the correction probability for this advanced

procedure can be approximated as

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≅ (1 −
𝑘!

𝑚𝑘
)

So that they can be very just about one hundred% in

lots of sensible eventualities as m is in general huge.

The accelerated correction rate comes on the cost of an

additional complex correction method that wants the

replication of the CBF, the removal of the entire

entries besides the erroneous one (n−1), and sooner or

later the query for the l + 1 candidates. However, as

soft error are infrequent events, and the process is only

wanted when the straightforward approach provided

earlier than are not able to correct an error, the scheme

may also be valuable in real purposes.

IV. RESULTS AND DISCUSSIONS

Fig.1 Simulation output

Fig.2 RTL Schematic.

Fig.3 Technology Schematic.

V. CONCLUSION

This paper explores an exciting front in the Bloom

filter research space, namely the special category of

small Bloom filters carried in packet headers. The

configuration regarded on this temporary is that of a

memory included with a per phrase parity bit for

which it is confirmed that the CBF can be utilized to

gain single bit error correction. This suggests how

present CBFs can be used to gain error correction in

© February 2016 | IJIRT | Volume 2 Issue 9 | ISSN: 2349-6002

IJIRT 144340 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 155

addition to perform their normal membership

checking function.

REFERENCES

[1] Peter Brass, Advanced Data Structures,

Cambridge University Press, 2008, pp. 402-

405.

[2] Burton H. Bloom, Space/time trade-offs in

Hash Coding with Allowable Errors,

Communications of the ACM, Volume 13,

Issue 7, 1970.

[3] A. Moshovos, G. Memik, B. Falsafi, and A.

Choudhary, “Jetty: Filtering snoops for

reduced energy consumption in SMP servers,”

in Proc. Annu. Int. Conf. High-Perform.

Comput. Archit., Feb. 2001, pp. 85–96.

[4] C. Fay et al., “Bigtable: A distributed storage

system for structured data,” ACM TOCS, vol.

26, no. 2, pp. 1–4, 2008.

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S.

Singh, and G. Varghese, “An improved

construction for counting bloom filters,” in

Proc. 14th Annu. ESA, 2006, pp. 1–12.

[6] M. Mitzenmacher, “Compressed bloom

filters,” in Proc. 12th Annu. ACM Symp.

PODC, 2001, pp. 144–150.

[7] M. Mitzenmacher and G. Varghese, “Biff

(Bloom Filter) codes: Fast error correction for

large data sets,” in Proc. IEEE ISIT, Jun. 2012,

pp. 1–32.

[8] S. Elham, A. Moshovos, and A. Veneris, “L-

CBF: A low-power, fast counting Bloom filter

architecture,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 16, no. 6, pp. 628–

638, Jun. 2008.

[9] T. Kocak and I. Kaya, “Low-power bloom

filter architecture for deep packet inspection,”

IEEE Commun. Lett., vol. 10, no. 3, pp. 210–

212, Mar. 2006.

[10] S. Dharmapurikar, H. Song, J. Turner, and J.

W. Lockwood, “Fast hash table lookup using

extended bloom filter: An aid to network

processing,” in Proc. ACM/SIGCOMM, 2005,

pp. 181–192.

[11] Almeida, Paulo; Baquero, Carlos; Preguica,

Nuno; Hutchison, David (2007), Scalable

Bloom Filters, Information Processing Letters,

pp.255–261.

[12] Rafael Laufer, Pedro B. Velloso, and Otto

Carlos M. B. Duarte, A Generalized Bloom

Filter to Secure Distributed Network

Applications, Computer Networks, vol. 55, no.

8, pp. 1804-1819, June 2011.

[13] Chazelle, Bernard; Kilian, Joe; Rubinfeld,

Ronitt; Tal, Ayellet, The Bloomier Filter: an

Efficient Data Structure for Static Support

Lookup Tables, Proceedings of the Fifteenth

Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 30–39, 2004.

[14] Deng, Fan; Rafiei, Davood , Approximately

Detecting Duplicates for Streaming Data using

Stable Bloom Filters, Proceedings of the ACM

SIGMOD Conference, pp. 25–36, 2006.

[15] James K. Mullin and Daniel J. Margoliash, A

tale of three spelling checkers, Software,

Practice and Experience, pp. 625- 630, June

1990

