
© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 26

SCHEMA AGNOSTIC INDEXING WITH LIVE

INDEXES

Monica Bansal

M.Tech Information Technology, Dronacharya College of Engineering

Abstract- Now-a-days, schema is the most popular

standardized language to describe data. Developers are

working with applications that create massive volumes of

new, rapidly changing data types — structured, semi-

structured, unstructured and polymorphic data. Long

gone is the twelve-to-eighteen-month waterfall

development cycle. Now small teams work in agile

sprints, iterating quickly and pushing code every week or

two, some even multiple times every day. Organizations

are now turning to scale-out architectures using open

source software, commodity servers and cloud

computing instead of large monolithic servers and

storage infrastructure. Relational databases were not

designed to cope with the scale and agility challenges that

face modern applications, nor were they built to take

advantage of the commodity storage and processing

power available today. This research paper proposes a

model to allow insertion of the data without a predefined

schema and also with schema agnostic indexing with the

concept of live indexes. It makes it easy to make

significant application changes in real-time, without

worrying about service interruptions – which means

development is faster, code integration is more reliable,

and less database administrator time is needed.

Index Terms – automatic indexing, live indexes, nosql,

schema agnostic

I. INTRODUCTION

In the recent boom of the world of enterprise

computing, many changes have been seen in

platforms, languages, processes, and architectures. But

throughout a major of time, in the software profession,

relational databases have been the default choice for

serious data storage, especially in the world of

enterprise applications. NoSQL comes into picture

when some data in hand crosses some threshold of

Relational DB in terms of requirements like practically

100% availability & reliability, extremely distributed

environments, undeterminable scalability

requirements with practically no room for availability

sacrifice, no fixed schema etc. In such a situation,

traditional systems fail to provide expected outcomes.

Based on priorities of mentioned parameters,

appropriate NoSQL systems are chosen. Recently

there have been many such new models booming to

change the RDBMS monopoly, but most of these

options come as a complete replacement of the current

systems and that too mostly beneficial just for the said

scenarios.

The technology used in this thesis combined with the

proposed system aims to enable the developer to use

the proposed system along with the RDBMS, both

handling the parts of data that they are efficient and

good at handling. Goals of the research are: no explicit

indexing required in the proposed system, provide an

alternative solution to Relational Database

Management System, Currently RDBMS using

projects should easily be able to adapt the proposed

system

II. RELATED WORK

A. Schema-Agnostic Database

In a relational database, if you define schema in

advance, then every time you throw data at the

database, it must match that schema. A schema

agnostic database system can take data, and no matter

what the schema is, as long as it's well formed XML,

it can parse it and store it in the structure that is

supplied by the XML tree.

Schema agnostic databases are not bound by schemas

— but are aware of the schemas – and specific

schemas can be enforced at the database level if

desired or necessary.

B. Schema-Agnostic Indexing

With a goal to eliminate the impedance mismatch

between the database and the application

programming models, we can exploit the simplicity of

JSON and its lack of a schema specification. It makes

no assumptions about the documents and allows

documents within a database collection to vary in

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 27

schema, in addition to the instance specific values. For

example, in DocumentDB’s database, engine operates

directly at the level of JSON grammar, remaining

agnostic to the concept of a document schema and

blurring the boundary between the structure and

instance values of documents.

C. Azure DocumentDB

It is a fully managed, highly scalable, NoSQL, multi-

tenant, distributed database as-a-service for managing

JSON documents at internet scale that offers rich

query and transactional processing over schema-free

data. As a JSON database, DocumentDB natively

supports JSON documents enabling easy iteration of

application schema, and support applications that need

key-value, document or tabular data models.

DocumentDB embraces the ubiquity of JSON and

JavaScript, eliminating mismatch between application

defined objects and database schema. Deep integration

of JavaScript also allows developers to execute

application logic efficiently and directly - within the

database engine in a database transaction.

III. LIVE INDEXES

In this work, I propose to harness the capability of this

indexing idea in working projects as a part of its source

model rather than as database model. In this entire

section we will discuss on how this will be designed

and implemented.

The idea of this proposal is to facilitate those projects

which currently have complete dependencies on their

relational data base management systems to handle all

their data related requests. For such projects, which

fall under the further mentioned target datasets, I

propose to create a separate source model, which will

act as a subordinate data management system to

handle the mentioned data.

A. Comparison

In the existing RDBMS model, when clients send

request to the database system, the database system

processes the request and sends the output. For the

relational database, developers need to manage the

database system because it requires change in schema

whenever a alter column or create table request comes

in. It becomes a tedious task to maintain the database

schema as changes in schema should not affect the

existing database model.

Fig 1 - Alter Table Query

Fig 2 - Alter Table Result

B. Indexes

For the existing relational DBMS, indexes are used to

improve the speed of the data retrieval operations on a

database table. They are used to quickly locate the data

without having to search every row in a database table

every time a database table is accessed. For the

existing model, we have to create indices every time

when there is a need to access the data faster. Every

database management system provides ways to create

indices or delete them as per the requirements of the

developers.

Fig 3 - Index Access Comparison

C. Design

In the proposed work we will consider each

document as a JSON object. The system will take

such documents as input to create index. It will

iteratively parse each key value pair and will form

triads according to the hierarchy of the values. We

will utilize the hash map data structure and use these

triads as key of the map. The value will then contain

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 28

a list of the identifier of the documents. Collating

with the recommendations of DocumentDB, we can

even create multiple hash-maps for different indexing

purpose like in the following diagrams:

Fig 4 - Types of Path Listing

Fig 5 - Dynamic Encoding of Posting Lists

The proposed design will keep this hash map on the

server static memory. This means that the map will

be parsed and cached on the server. We can

implement the Least Recently Used technique to

segregate the entire listing into main memory and

persisted as files. We will discuss the scope of this in

possible future works.

Fig 6 - Document Frequency vs Number of Terms

Fig 7 - Collection Size to Percentage of Total Terms

IV. TARGET DATASETS

A. Sparse Data

Sparse Data are those kinds of datasets which have

usually very large number of attributes/ columns but

each individual entry of that entity, has value for a

comparatively very less number of these attributes.

Sparse data is a very big deal in the current generation

of datasets. It is intuitively clear why RDBMS is not

at all an ideal way to store and manage such kinds of

databases. This is because the table for such entities

will contain large amount of columns with value of

less than 30% of these. The main issue with this is that

it will become unreasonably very expensive to create

any secondary index on such data. Also, the decision

to select for which permutation should the developer

create secondary indices becomes very crucial and will

always end with high compromise in efficiency.

Fig 8 - Sparse Dataset prototype

Fig 9 - Sparse Data as JSON

B. Flexible Schema

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 29

In many cases, there is no constant definition of

schema. Data can keep on flowing without any

particular schema which becomes extremely difficult

to manage with an RDBMS system. Although,

logically common entities will still have many

common attribute keys, but there can be addition of

new keys without predefinition. There should

definitely be a better way to handle such a data where

schema should not be a pre requisite to enter an entry.

This JSON driven proposal will do precisely that

thing. In this case, the entries will define the structure

and logical schema of the data in hand. Any entry will

be JSON converted and then added to the files

managed by this system. This gives freedom to the

users as well as developers to handle any number of

attributes without any issues of altering and efficiency.

One of the most beneficial features being, two similar

entities with different attributes can still be

managed/compared together.

Fig 10 - Index formation from multiple trees

The above diagram shows example of 2

documents with similar entities, but different

attributes. It can be observed that document 1

has an addition of “dealers” in exports. That too

is not consistent in every index of “exports”

array. Such data can be directly compared and

also unified for creation of index as follows:

Fig 11 - Final Index

D. Historical Data

Many use cases include very large amount of historic

data which are not very frequently accessed but still

are stored in RDBMS with the same privileges as that

of most frequently accessed current data. Many keep a

practice of taking a dump of this data outside the

database management system and then loading it back

on system to access it, which gives us the mentioned

situation again.

V. SYSTEM MODELS

In this design we have proposed that how relational

data that is stored in form of tables can also be stored

in JSON format. We have proposed a model that will

take relational data in form of tables and will give

JSON data as an output. This model doesn’t require

any schema data to store data in JSON format. But to

store data in tables we are require to provide schema

data to database management system. It can also be

used for the existing system which do not want to

change the existing model but have large data, so for

those type of system this model can take the relational

data and produces JSON string output and can stored

that JSON strings in files and then those files can be

used for retrieving data. We have also proposed a

concept ‘Live Index’ that will help us to fetch the

document fast without providing any explicit index.

Thus we can conclude that this model states that for

any data type, data set as a input we can transformed

that data set into JSON format and then stored that

JSON string in file. Now a days, we use relational data

model so we have considered that data store, it does

not make any difference for the relational data nor we

have to specify any relation between the tables while

transforming it into JSON string. For this model, we

don’t have to mention explicitly about any relation

between the entities that we are storing in the files. It

is also a very simple task to retrieve the data from the

transformed files.

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 30

Fig 12 - Existing Relational to JSON model

Fig 13 - Documents to HashMap flow

After all the data of each required entity is converted

and saved as a JSON format as explained above, we

will now see what happens during the execution.

Now, when a new instance of the proposed system is

created for an entity, firstly, all the JSON documents

will be read, converted to trees as explained in the

previous sections. These trees are the combined to

create the index required for our model. This index is

saved as a hash map in the instance.

VI. FUTURE SCOPE

Currently we are creating an instance of the proposed

system which will contain all the indexes on the main

memory. Future scope can implement the Least

Recently Used technique to segregate the entire listing

into main memory and persisted as files. This will

reduce the load on the main memory & will avoid

creation of indices every time an instance is created.

This will dramatically increase the performance once

succeeded.

The proposed system can also be adapted for Object

Relation Mappings. This sounds contradictory as one

of our points was to avoid Object Relational Mappings

to in turn avoid impedance mismatch. But this

adaptation will be completely superficial & internally

will work in exactly the same way as described above.

But this will make being able to adapt this system all

the easier for such projects which use ORMs like

Hibernate.

With continuous sustained input of data in our

proposed document store, updating indexing becomes

a tedious job for the system. The main factor being that

updates are carried in different locations of our

document store. This calls for a need of providing a

solution to save the number of writes and unnecessary

reads.

Document Store and how documents are arranged in it

is not well defined yet. We can use a system file

hierarchy for the same. This will involve grouping

documents of same entities and placing them in a

common folder. This can be even made better in

future.

VII. CONCLUSION

This research paper described the design and model

of Live Indexes for managing JSON documents at

massive scale.

We first studied current systems in this field

headlined by DocumentDB. Then we defined what

we plan to achieve in this research which was mainly

providing a flexible alternative to RDBMS with

definite benefits. We defined that our target datasets

will have the virtues of one or more from sparse,

flexible and historic. We then described the models

using black box diagrams which describe how we

will have current systems migrated to our proposed

© July 2016 | IJIRT | Volume 3 Issue 2 | ISSN: 2349-6002

IJIRT 143814 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 31

systems and what changes must be made to the

current system to adapt out proposal.

We designed our module to be schema-agnostic by

representing documents as trees. Support of

automatic indexing of documents is provided by

default. Finally, we mention the future scope of this

proposal.

APPENDIX

JSON - JavaScript Object Notation

CRUD - Create, read, update and delete

ORM - Object Relational Mapping

MVC - Model, View, Controller

ACKNOWLEDGMENT

I would like to express my sincere gratitude to all those

people who have given their heart willing support in

making this completion a magnificent experience.

I am thankful to Ms. Megha Goel, H.O.D, Department

of Technology, Dronacharya College of Engineering,

Gurgaon for providing us good and healthy

environment for the preparation of this dissertation.

I am also thankful to my dissertation guide Mr.

Dharmendra Pal, Associate Prof., Department of

Information Technology for his timely comments and

suggestions. He advised on the details and gave

invaluable discussions. Without the guidance of my

supervisor, this dissertation may not have well

materialized.

I am really grateful to my parents for their support,

appreciation and encouragement. A very special

acknowledgement to authors of various research

papers and books which help me a lot.

REFERENCES

[1] Shukla, Dharma, et al. "Schema-agnostic

indexing with Azure DocumentDB." Proceedings of

the VLDB Endowment 8.12 (2015): 1668-1679.

[2] Copeland, Marshall, et al. "Overview of

Microsoft Azure Services." Microsoft Azure. Apress,

2015. 27-69.

[3] Crockford, Douglas. "The application/json

media type for javascript object notation (json)."

(2006).

[4] Pokorny, Jaroslav. "NoSQL databases: a step

to database scalability in web environment."

International Journal of Web Information Systems 9.1

(2013): 69-82.

[5] Liu, Zhen Hua, Beda Hammerschmidt, and

Doug McMahon. "JSON data management:

supporting schema-less development in RDBMS."

Proceedings of the 2014 ACM SIGMOD international

conference on Management of data. ACM, 2014.

[6] Becker, Riccardo. Learning Azure

DocumentDB. Packt Publ., 2015.

[7] Sriparasa, Sai Srinivas. JavaScript and JSON

Essentials. Packt Publishing Ltd, 2013.

[8] Sadalage, Pramod J., and Martin Fowler.

NoSQL distilled: a brief guide to the emerging world

of polyglot persistence. Pearson Education, 2012.

[9] https://azure.microsoft.com/en-

us/documentation/services/documentdb/

[10]

 https://en.wikipedia.org/wiki/Database_sche

ma

