
© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 377

EFFICIENT TECHNIQUE FOR MINING

FREQUENT PATTERNS OVER DATA STREAM

Niyati M. Mevada and Ms. Jayna B. Shah

Dept. of Computer Engineering ,

Sardar Vallabhbhai patel Institute of technology, Vasad-388306

 Gujarat , India

Abstract— Mining frequent items is one of the most

important research topics in data mining. In existing

system an effective bit-sequence based, one-pass

algorithm, called MFI-Trans-SW (Mining Frequent

Itemsets within a Transaction Sliding Window), to mine

the set of frequent itemsets from data streams within a

transaction sliding window which consists of a fixed

number of transactions. MFI-TransSW algorithm

consists of three phases: window initialization, window

sliding and pattern generation. The existing system mines

the frequent patterns for the recent data only . In

proposed system, we are going to mine the frequent

patterns for overall all data. Even the historical data is

useful when frequent patterns are mined. As soon as the

transaction arrives , each incoming transaction is

scanned . If the itemset exist in the transaction the

support count is incremented by 1. Otherwise the support

count would remain same as it was. Frequent as well as

infrequent patterns are maintained in the system. The

proposed system not only attain highly accurate mining

results, but also run significant faster than existing

algorithms for mining frequent itemsets from data

streams without using a sliding window.

Index Terms—frequent itemsets , data stream

I. INTRODUCTION

 A data stream is a continuous, huge, fast changing,

rapid, infinite sequence of data elements. We can say

data stream is an ordered sequence of elements that

arrives in timely order. It is assumed that the stream

can only be scanned once and hence if an item is

passed, it cannot be revisited, unless it is stored in

main memory. Different from data in traditional

static datasets, data streams are continuous,

unbounded, usually come with high speed and have a

data distribution that often changes with time [1]. It is

often refer to as streaming data. In this , it uses

multiple segments for handling different size of

windows over data streams. Storing these segments

in a data structure, the usage of memory can be

optimized. Many applications generate large amount

of data streams in real time, such as sensor data

generated from sensor networks, online transaction

flows in retail chains, Web record and click-streams

in Web applications, call records in

telecommunications, performance measurement in

network monitoring and traffic management.

Data streams can be further classified into offline

data streams and online data streams. Offline data

streams are characterized by regular bulk arrivals [4],

such as a bulk addition of new transactions as in a

data warehouse system. Online data streams are

characterized by real-time updated data that come

one by one in time, such as an a continuously

generated transaction as in a network monitoring

system. Bulk data processing is not possible for one

streaming data. Due to the characteristics of data

streams, there are some inherent challenges for

mining streaming data [8]. First, each data element of

stream should be examined at most once. Second, the

memory usage in the process of mining data streams

should be bounded even though new data elements

are continuously generated from the streams. Third,

each element due to the characteristics of data

streams, there are some inherent challenges for

mining streaming data. Fourth, the analytical outputs

of the stream should be instantly available when the

user requested. Finally, the errors of outputs should

be constricted as small as possible. The continuous

characteristic of streaming data makes it essential to

use the algorithms which require only one scan over

the stream for knowledge discovery. The huge nature

of stream makes it impossible to store all the data

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 378

into main memory or even in secondary storage. This

motivates the design of a summary data structure

with small footprints that can support both one-time

and continuous queries [5]. In other words, one-pass

data stream mining algorithms have to sacrifice the

correctness in the analytical results by allowing some

counting errors. Consequently, previous multiple-

pass data mining algorithms studied for static datasets

are not feasible for mining data streams.

Frequent itemset mining is a KDD technique which is

the basic of many other techniques, such as

association rule mining, sequence pattern mining,

classification, and clustering. It is impossible to

maintain all the elements of data streams [3]. This

rapid generation of continuous streams of

information has challenged our storage, computation

and communication capabilities in computing

systems. Data Stream mining refers to informational

structure extraction as models and patterns from

continuous data streams [5]. Data Streams have

different challenges in many aspects, such as

computational, storage, querying and mining. Data

stream mining differs from traditional data mining

since its input of mining is data streams, while the

latter focuses on mining (static) databases. Compared

to traditional databases, mining in data streams has

more constraints and requirements. The mining task

should proceed normally and offer acceptable quality

of This result, one good stream mining algorithm to

possess efficient performance and high throughput

[7]. Slight approximate errors occurred in the mining

result is usually acceptable by the user[2] [4].

 II. EXISTING SYSTEM

Frequent itemset mining approaches have mainly

considered the problem of mining transactional

databases[9]. In these methods, transactions are

stored in secondary storage so that multiple scans

over the data can be performed. It accepts only one

minimum support and using fixed window length. In

these method old data required many times. So, it

needs huge memory to stored data. The traditional

data mining methodology may not be valid in a data

stream. Because it uses huge memory to store data,

high processing power, several iterations of the data,

uses a uniform minimum support threshold[11]. Here

an effective bit- sequence representation of items is

used to reduce the time and memory needed to slide

the windows. The three main phases of MFI-TranSW

are : Window Initialization Phase, Window Sliding

Phase & Frequent Itemset Generation Phase. These

phases are discussed below .

2.1 Window Initialization Phase :

The window initialization phase is activated while the

number of transactions generated so far in a

transaction data stream is less than or equal to a user

predefined sliding window size [6]. In this phase,

each item of the new incoming transaction is

transformed into its bit-sequence representation.

2.2 Window Sliding Phase :

The window sliding phase is activated after the

current sliding window becomes full. A new

incoming transaction is appended to the current

sliding window, and the oldest transaction is removed

from the window . For removing oldest information,

a method is used in the algorithm[1]. Based on the

bit-sequence representation, MFI-TransSW algorithm

uses the bitwise left shift operation to remove the

aged transaction from the set of items in the current

sliding window .After sliding the window, an

effective pruning method, called Item- Prune, is used

to improve the memory usage.

2.3 Frequent Itemset Generation Phase:

The frequent itemsets generation phase is performed

only when the up-to-date set of frequent itemsets is

requested [10]. Finally we get frequent itemsets for

each particular window.

 III. PROPOSED SYSTEM

The existing system mines the frequent patterns for

the recent data only . We can also mine the frequent

patterns for overall all data Even the historical data is

useful when frequent pattern are mined. In the

proposed system , as soon as the transaction arrives ,

each incoming transaction is scanned . If the itemset

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 379

exist in the transaction. The support count is

incremented by 1. Otherwise the support count would

remain same as it was. Once it is done for 1- itemset .

Similarly the process is carried out for 2-itemset as

well as for 3-itemset . The subsets are formed until no

pairs are generated. As we are going to increment the

counter in our proposed work for each and every

itemsets. Here one problem may arise, if the data

would be of two or four years then how long we are

going to maintain the counter. So we are going to

use the concept of data warehouse where for every

previous month the past frequent as well as

infrequent patterns are dumped into the data

warehouse and the counter will start again from one

for the new month. Thus the memory usage will also

reduced and the data will be preserved in the data

warehouse

In our proposed system we provide two options . We

can mine patterns either monthly or overall. If month

is selected than frequent patterns of that month are

displayed. Frequent as well as infrequent patterns are

maintained in the system. As no infrequent itemsets

are discarded, the accuracy is increased. Thus the

proposed system maintains the set of frequent

patterns for overall data also.Considered the below

example for understanding the working of proposed

system. Let the first two transactions in a transaction

data stream be <T1 (abd)>, <T2 (acd)>

TRANSACTION

ITEMS

T1 a b d

T2 a c d

 Table : 3.1

Scan first transaction as well as calculate support

count of it.

 ITEMSET

SUPPORT

COUNT

a 1

b 1

d 1

 Table : 3.2

 Generating 2-itemsets.

 ITEMSET

SUPPORT COUNT

ab 1

ad 1

bd 1

 Table : 3.3

 Generating 3-itemsets

 ITEMSET

SUPPORT COUNT

Abd 1

 Table : 3.4

Scanning new incoming transaction i.e T2 [a c d]

and calculating support count.

 ITEMSET

SUPPORT COUNT

A 1 + 1

B 1

D 1 + 1

C 1

Table : 3.5

Generating 2-itemsets

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 380

 Table : 3.6

Generating 3-itemsets

 Table : 3.7

Thus the frequent as well as infrequent itemsets are

incremented and maintained in the indexing form.

Thus we can also fetch the frequent patterns monthly,

as all the patterns are dumped and preserved into

data warehouse .

 IV. EXPERIMENTAL RESULTS

We have analyzed the results of both MFI-

TranSW and our proposed system. Clearly we

can see here that the proposed system works

better than the MFI-TranSW. All the parameters

are compared below .

SR

No

PARAMETERS

MFI-

TranSW

PROPOSED

SYSTEM

 1. Execution Time

Number of

transactions =100

 3300 ms

 456 ms

 2. Execution Time

Number of

transactions =800

 8891 ms

 4753 ms

 3. Execution Time

Number of

transactions =4000

12056 ms

8945 ms

4. Execution Time

Number of

transactions

=10000

187601 ms

115593 ms

5. Number of

frequent patterns

Approx 5 to

6 Patterns

Generated

per window

33 Patterns

Generated

 Table : 4.1

Figure 4.1 shows that the system works efficiently

even on different datasets. The execution time of

proposed system is

 ITEMSET

 SUPPORT COUNT

ab 1

ad 1 + 1

ac 1 + 1

bd 1

bc 1

dc 1 + 1

 ITEMSET

SUPPORT COUNT

abd 1

abc 1

acd 1 + 1

adb 1

bdc 1

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 381

less than existing system even when different no. of

transaction are considered. It proves that the

proposed system takes nearly half time than MFI-

TranSW.

Figure 4.2 shows the numbers of frequent patterns

generated in both the system. MFI-TranSW generated

frequent patterns per window whereas proposed

system generates the overall frequent patterns.

Fig : 4.1

 Fig : 4.2

 V. Conclusion

We have isolated a number of issues in data streams,

the purpose is to introduce the process of mining

frequent patterns in data streams and particularly

analyze the performance of the algorithm. We

proposed a data mining method for finding overall

frequent and infrequent items over data stream. An

efficient method is used, for mining the set of

frequent itemsets over data streams without a

transaction sliding window. As we are going to

increment the counter in our proposed work for each

and every itemsets .If the data would be of two or

four years then maintain the counter would be a

tedious task. So we are going to use the concept of

data warehouse where for every previous month the

past frequent as well as infrequent patterns are

dumped into the data warehouse and the counter will

start from one for the new month. Thus the memory

usage will also reduced and the data will be secure in

the data warehouse. The proposed system provides

us highly accurate mining results and the execution

time is less than existing algorithms for mining

frequent itemsets from data streams without using a

sliding window. We have used the static data streams

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

100 800 4000 10000

T

I

M

E

I

N

M

S

NO. OF TRANSACTION

MFI-TranSW

proposed
System

0

5

10

15

20

25

30

35

 MFI Proposed

P

A

T

T

E

R

N

S

SYSTEM

No. of
Patterns

© June 2016 | IJIRT | Volume 3 Issue 1 | ISSN: 2349-6002

IJIRT 143786 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 382

in the proposed system. In future we can use online

data streams for this system.

REFERENCES

1. R. AGRAWAL, T. Imielinski, and A. Swami.

“Mining Association Rules between Sets of

Items in Large Databases”. In Proceedings of

the 2008 International Conference on

Management of Data, pp. 207-216, 2008

2. Mr. Velusamy., Ms. Shobana. , Ms. Saranya.

“Efficient Mechanism to Discover Frequent

Pattern over Online Data Streams”

International Journal of Engineering Research

& Technology (IJERT) Vol. 2 Issue 12,

December – 2013

3. S. Muthukrishnan , “Data streams: algorithms

and applications”. Proceedings of the

fourteenth annual ACMSIAM symposium on

discrete algorithms, 2009.

4. Li, H.-F., Lee, S.-Y., Shan, M.-K. (2005a).

“Online mining (recently) maximal frequent

itemsets over data streams”. In Prooceedings

of the IEEE RIDE.

5. Chang, J., & Lee, “A sliding window method

for finding recently frequent itemsets over

online data streams”. Journal of Information

Science and Engineering, 2005.

6. Yang, C., Li, Y., Zhang, C., & Hu, Y., “A

novel algorithm of mining maximal frequent

pattern based on projection sum tree”, Fuzzy

Systems and Knowledge Discovery, vol. 1,

pp.458–462, 2007

7. S. Muthukrishnan , “Data streams: algorithms

and applications”. Proceedings of the

fourteenth annual ACMSIAM symposium on

discrete algorithms, 2009.

8. Kun Li,, Yong-yan Wang, Manzoor Ellahi,

Hong-an Wang “Mining Recent Frequent

Itemsets in Data Streams” Fifth International

Conference on Fuzzy Systems and Knowledge

Discovery , IEEE-2008.

9. Rahul Anil Ghatage “Frequent Pattern Mining

Over Data Stream Using Compact Sliding

Window Tree & Sliding Window Model”

nternational Research

10. Journal of Engineering and Technology

(IRJET) Volume: 02 , July-20

11. Hua-Fu Li , Man-Kwan Shan , Suh-Yin Lee.

“DSM-FI : an efficient algorithm for mining

frequent itemsets in data stream” Knowl Inf

Syst (2008) 17:79–97Springer

