
© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 20

Scalable architecture for multi-user encrypted SQL

operations on cloud database services

A. Sheelavathi, K. Preethi

Assistant Professor/IT, Assistant Professor/CSE

Abstract — The success of the cloud database

paradigm is strictly related to strong guarantees in

terms of service availability, scalability and security,

but also of data confidentiality. Any cloud provider

assures the security and availability of its platform,

while the implementation of scalable solutions to

guarantee confidentiality of the information stored in

cloud databases is an open problem left to the tenant.

Existing solutions address some preliminary issues

through SQL operations on encrypted data. We

propose the first complete architecture that combines

data encryption, key management, authentication and

authorization solutions, and that addresses the issues

related to typical threat scenarios for cloud database

services. Formal models describe the proposed

solutions for enforcing access control and for

guaranteeing confidentiality of data and metadata.

Experimental evaluations based on standard

benchmark sand real Internet scenarios show that the

proposed architecture satisfies also scalability and

performance requirements.

Index Terms— Database, Confidentiality, Encryption,

Access Control

I INTRODUCTION

The diffusion of cloud database services is

being hindered by the perception of confidentiality

risks when we store our information in cloud

infrastructures. Cryptographic solutions address

this issue in the context of file storage when there

is no need to perform computations over encrypted

data. We aim, instead, to guarantee data

confidentiality and data isolation for cloud

databases that represent an open research area.

 There are three main related issues behind

these two problems: execution of SQL operators

over encrypted data; enforcement of access control

mechanisms through selective encryption

strategies; design of architectures not penalizing

the performance and scalability that are typical of

cloud-based services . Existing proposals offer

partial and separate solutions to data confidentiality

and isolation.

 For example, architectures supporting

SQL operations on encrypted data leave access

control to the cloud provider or enforce it through

an intermediate trusted server. Other proposed

architectures solve the problem of access control

without the intervention of the cloud provider, but

they do not allow execution of SQL operations on

encrypted data. We propose the first architecture,

called Multi-User relaTional Encrypted DataBase

(MuteDB), that guarantees data confidentiality by

executing SQL operations on encrypted data and by

enforcing access control policies through selective

encryption methods. By combining these two

approaches MuteDB is the only solution ensuring

confidentiality of data stored in the cloud even in

the worst threat scenario where legitimate database

users collude with cloud provider employees. This

result is achieved through an innovative model that

translates access control policies related to a

plaintext database into selective encryption

strategies that are applied to the corresponding

encrypted database. Our solution works even in

dynamic scenarios, in which users and access

control policies change over time, without the need

to renew and redistribute user credentials. The

proposed architecture is specifically designed for

cloud database scenarios where multiple users can

access the cloud database through the Internet

possibly from different geographical areas.

 Special attention in the architectural

design is devoted to guarantee the same availability

and scalability of a plaintext cloud database. For

this reason, MuteDB does not rely on any

intermediate trusted server that could become a

system bottleneck and a single point of failure.

Moreover, it adopts innovative solutions for

guaranteeing efficient retrieval of database

metadata that are stored in an encrypted form in the

cloud database. We can consider MuteDB as the

first architecture that allows enterprises to leverage

cloud database services while achieving the same

© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 21

confidentiality guarantees of a traditional in-house

database and the same scalability of a cloud

database service. The performance and scalability

of MuteDB are evaluated through a prototype that

is subject to different query workloads based on

standard (TPC-C) and recently proposed (YCSB)

database benchmarks. We highlight that, as a

further contribution, this paper reports the first

performance evaluation studies related to encrypted

cloud database services in real distributed

environments where the clients are geographically

distributed over the PlanetLab platform.

Experimental results show that MuteDB does not

affect the scalability of the original cloud service,

and its performance for geographically distributed

clients are comparable to those of encrypted

cloud database services.

II LITERATURE REVIEW

 We propose an architecture guaranteeing

confidentiality and isolation of data stored in cloud

database infrastructures that are subject to two

types of threats: those related to specific roles, and

those deriving by the collusion of these roles. The

literature focuses on the former threats, while our

proposal aims to respond to both classes. Typical

threat models in literature identify the possible

issues related to four roles: the tenant Database

Administrator (DBA), the tenant database users,

the cloud provider employees, and people external

to tenant’s and provider’s organizations. We

describe our assumptions based on the four roles

and then we consider collusion.

 The DBA is the only role that has access

to all tenant data. He is in charge of installing and

configuring the database, implementing the access

control policies and managing the user’s

credentials. As in related literature, our threat

model assumes that the DBA is trusted. Possible

measures to verify the loyalty of the DBA, such as

hashed logging, continuous monitoring and

supervision, are outside the scope of this paper.

 External attackers have no legitimate

access to the infrastructure and data of the tenant

organization nor to those of the cloud provider.

They can try to access tenant information through

several types of attack: by eavesdropping data in

motion between the tenant clients and the cloud

servers, by compromising the cloud servers and/or

the tenant clients.

 The cloud insiders are employees of the

cloud provider that have access to the cloud

infrastructure hosting the database service of the

tenant organization. Their behavior is honest but

curious, that is, they may be interested in accessing

tenant data, but they do not modify or delete them.

This assumption is considered realistic in all related

literature and the motivation should be clear. While

reading data would remain unnoticed by a tenant,

the detection of any data modification would

penalize the trust and reputation of the cloud

provider in the eyes of all of its customers. Tenant

insiders refer to database users having legitimate

access to a subset of the tenant data stored in the

cloud database. The portion of accessible data is

defined by the access control policies of the tenant

organization. Tenant insiders may try to gain

access to more information by escalating their

privileges through a violation of the access control

policies.

Guaranteeing data confidentiality in the

cloud against external attackers, cloud insiders, and

tenant insiders under the assumption that they do

not collude can be achieved through some

combinations of existing solutions. For example,

best practices in the field of authentication and

secure communication protocols hinder external

attacks. Recent SQL-aware cryptographic strategies

allow a tenant to store encrypted data thus

preventing cloud insiders and external attackers

from reading tenant data. Standard database access

control mechanisms, such as privilege GRANTS

and reference monitors, limit the operations of

tenant insiders within their legitimate

authorizations. Existing access control mechanisms

at the database engine side guarantee

confidentiality and isolation in traditional in-house

deployments where the infrastructure is managed

by trusted personnel, but they do not work as well

for cloud database services because they do not

consider the main threats posed by a collusion

between a cloud and a tenant insiders when data are

encrypted through a global master key.

In a cloud database scenario, the malicious

operations of a tenant insider are limited by access

control policies, but these policies cannot prevent

the possibility that a tenant insider discloses its

credentials including its decryption key(s) to a

cloud insider. The latter, that has access to all the

encrypted data and can bypass the access control

policies enforced at the cloud side, can violate the

© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 22

confidentiality of the entire database by means of

the key(s) received by the tenant insider.

A second collusion scenario may happen

if a cloud insider delivers some encrypted data to a

tenant insider that is not authorized to access them.

In this scenario the tenant insider can leverage its

credentials to decrypt all encrypted data, thus

violating the tenant access control policies. Let us

anticipate a summary of the design choices and

novel solutions that allow MuteDB to protect data

against external attackers, cloud insiders and

tenant in- siders, and against collusion between

these roles. External attackers that eavesdrop

network traffic cannot access any plaintext

information because SQL operations issued to the

cloud database are protected by using standard

encryption protocols (e.g., SSL). Cloud insiders

and external attackers that have breached the cloud

servers cannot access confidential information,

because MuteDB encrypts tenant data with SQL-

aware encryption algorithms and the cloud provider

never obtains the decryption keys. Tenant insiders

cannot perform privilege escalation attacks on the

encrypted database thanks to a novel scheme that

translates and enforces the database access control

policies defined by the tenant DBA on the plaintext

database to the encrypted one. Even in the worst

case of a collusion between tenant and cloud

insiders, the proposed solution limits the data

leakage to the amount of information that is

accessible to the colluding tenant insider, because

MuteDB does not delegate the enforcement of

access control policies to the cloud provider.

III ALGORITHMS

RSA derives its security from the

difficulty of factoring large integers that are the

product of two large prime numbers. Multiplying

these two numbers is easy, but determining the

original prime numbers from the total -- factoring -

- is considered infeasible due to the time it would

take even using today’s super computers.

Mathametical formula:

Encryption :

 c = ENCRYPT (m) = memod n .

Decryption:

 m = DECRYPT (c) = cd mod n .

Diffie-Hellman key exchange, also called

exponential key exchange, is a method

of digital encryption that uses numbers raised to

specific powers to produce decryption keys on the

basis of components that are never directly

transmitted, making the task of a would-be code

breaker mathematically overwhelming. To

implement Diffie-Hellman, the two end users Alice

and Bob, while communicating over a channel they

know to be private, mutually agree on positive

whole numbers p and q, such that p is a prime

number and q is a generator of p. The generator q is

a number that, when raised to positive whole-

number powers less than p, never produces the

same result for any two such whole numbers. The

value of p may be large but the value of q is usually

small.

Mathametical formula:

 (g
x mod p)

y mod p = gxy mod p

 (g
y mod p)

x mod p = gyx mod p

A.Implementation:

Plaintext database model: Plaintext most

commonly meant message text in the language of

the communicating parties. Since computers

became commonly available. the original definition

implied that the message could be read by a human

being, the modern definition emphasizes that a

person using a computer could easily interpret the

data. Any information which the communicating

parties wish to conceal from others can now be

treated, and referred to, as plaintext. Thus, in a

significant sense, plaintext is the 'normal'

representation of data before any action has been

taken to conceal, compress, or 'digest' it.

It need not represent text, and even if it

does, the text may not be "plain". Plaintext is used

as input to an encryption algorithm; the output is

usually termed cipher text particularly when the

algorithm is a cipher. Code text is less often used,

and almost always only when the algorithm

involved is actually a code. In some systems,

however, multiple layers of encryption are used, in

which case the output of one encryption algorithm

becomes plaintext input for the next. The proposed

plaintext database model is a poset that extends the

structure poset S, with the resources R, a structure

s<S associated with a resource r< R is a parent of

the resource r (s > r).

© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 23

Figure 1. Architecture diagram

Access control: it is a way of limiting

access to a system or to physical or virtual

resources. In computing, access control is a process

by which users are granted access and certain

privileges to systems, resources or information. In

access control systems, users must present

credentials before they can be granted access. In

physical systems, these credentials may come in

many forms, but credentials that can't be

transferred provide the most security. The

management of admission to system and network

resources. It grants authenticated users access to

specific resources based on access policies and the

permission level assigned to the user or user group.

Access control often includes authentication, which

proves the identity of the user or client machine

attempting to access the files. the MuteDB models

and schemes for combining encryption and key

management to support data confidentiality and

isolation in cloud data bases.

The presentation of the models related to

access control in plaintext and encrypted

databases, we describe how MuteDB transforms an

access control matrix for the plaintext model to a

matrix suitable for the encrypted database, and how

it generates user credentials. Let R be the set of

resources that represent plain text tenant data, S the

set of plaintext database structures, E the set of

encrypted tenant data, U the set of users, and K the

set of encryption keys. We define A as the access

control matrix where, for each user u P U and for

each structure s P S, there exists a binary

authorization rule a that defines whether an access

to s by u is denied or allowed.

Encrypted database model: Database

encryption is the process of converting data, within

a database, In plaintext format into meaningless

cipher text by the means of a suitable algorithm.

Database decryption is converting the meaningless

cipher text into the original information using keys

generated by the encryption algorithms. Database

encryption be provided at the file or column level.

Encryption of a database is costly and requires

more storage space than the original data. The steps

in encrypting a database are: Determine the

criticality of the need for encryption, Determine

what data needs to be encrypted, Determine which

algorithms best suit the encryption standard,

Determine how the keys will be managed.

Numerous algorithms are used for encryption.

These algorithms generate keys related to the

encrypted data. These keys set a link between the

encryption and decryption procedures. The

encrypted data can be decrypted only by using

these keys.

Encrypted data are contained in encrypted

tables stored in cloud database servers. For each

plaintext table, the MuteDB DBA client generates

the corresponding encrypted table and a unique

encryption key. The name of the encrypted table is

computed by encrypting the name of the plaintext

table through that key. The encryption algorithm

used for encrypting the table names is a standard

AES algorithm in a deterministic mode (e.g., CBC

with constant initialization vector). In such a way,

only the users that know the plaintext table name

and the corresponding encryption key are able to

compute the name of the encrypted table. The

deterministic scheme is preferred because it allows

a correspondence between plaintext and encrypted

tables and improves the efficiency of the query

translation process.

Metadata management: Database metadata

include all information allowing a Mute DB client

to translate plaintext SQL operations into

operations working on the encrypted database. We

describe the original solutions adopted by Mute DB

to manage metadata. Existing proposals use trusted

infrastructures to store and distribute metadata

information or require database users to maintain

© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 24

them locally . These schemes simplify metadata

management, but they limit scalability and

availability of a cloud database service. The Mute

DB alternative is to store metadata in the cloud

database together with encrypted tenant data. This

approach allows each client to access metadata

directly and concurrently through standard SQL

operations, thus avoiding system bottlenecks and

single point of failures at the tenant side. Metadata

contain sensitive information, hence it is necessary

to store them in an encrypted form. Unlike the

proposals of the same authors in which all users are

provided with the same master encryption key ,

Mute DB proposes a new metadata management

strategy that enforces access control policies at the

encryption level, by generating a different

encryption key for each user and by ensuring that

each user is able to decrypt all and only encrypted

tenant data on which he/she has legitimate access.

MuteDB: The Mute DB DBA client, that

is the application for the creation and management

of the encrypted database. All tenant database users

can issue SQL operations directly to the cloud

database even from geographically distributed

locations by executing a Mute DB client on their

machines. The entire set of tenant data are stored

in an encrypted form in the cloud database. Thanks

to the use of SQL-aware encryption strategies, the

cloud database engine can execute queries on

encrypted data without accessing any decryption

keys. Even metadata that are necessary to manage

encryption strategies are considered critical

information, hence Mute DB stores them encrypted

in the cloud database: the DBA and the tenant users

can efficiently retrieve metadata through standard

SQL queries. We refer to the encrypted forms of

tenant data and metadata as encrypted tenant data

and encrypted metadata.

Scope:Rather than run multiple database

servers/VMs on the same machine, which wastes

space and system resources, each node runs a

single database server. Tenants can load databases

onto servers, and databases can be partitioned for

load balancing. The partitioning strategy is

workload aware, and partitions are migrated as

necessary when workloads change. Workload

monitoring includes tracking resource usage,

predicting combined resource requirements, and

consolidating workloads to minimize the total

number of machines required while not exceeding

machine capacities. To protect user privacy, the

authors briefly discuss CryptDB, which

implements adjustable security by storing only

encrypted data.

IV CONCLUSION

In this paper we propose MuteDB, a novel

architecture for cloud database services that

guarantees for the first time data confidentiality

through SQL-aware encryption algorithms and data

isolation through access control enforcement based

on encryption and key derivation techniques. These

solutions allow MuteDB to address threat issues

that are relevant for cloud services including risks

of information leakage due to collusions between

cloud provider employees and tenant users.

The most important solutions are

described through formal models, while the

feasibility, performance and scalability of the

proposed architecture are demonstrated through a

large set of experiments carried out through a

prototype deployed in a real Internet-based

environment where cloud database services are

accessed concurrently by geographically

distributed clients. All results confirm that for

realistic workloads, the MuteDB architecture

achieves performance and scalability comparable to

those of unencrypted cloud database services.

Ongoing work is focused on integrating private

information retrieval solutions in MuteDB with the

goal of preventing information leakage caused by

access pattern analyses, and novel architectural

solutions for hybrid cloud environments.

V FUTURE ENHANCEMENT

In personal computing devices that rely on

a cloud storage environment for data backup until

the arrival of the Diffie-Hellman key exchange and

RSA algorithms, governments and their armies

were the only real users of encryption. However,

Symmetric key cryptography, Diffie-Hellman and

RSA led to the broad use of encryption in the file

user to upload file. Since public-key algorithms

tend to be much slower than symmetric-key

algorithms, modern systems such as TLS and SSH

use a combination of the two: one party receives

the other's public key, and encrypts a small piece of

data (either a symmetric key or some data used to

generate it). The remainder of the conversation

uses a (typically faster) symmetric-key algorithm

for encryption. User upload file not directly store

© January 2016 | IJIRT | Volume 2 Issue 8 | ISSN: 2349-6002

IJIRT 143239 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 25

in cloud send cloud admin it allow that time only

store in cloud and download the data.

REFERENCES

[1] S. Pearson and A. Benameur, “Privacy, security

and trust issues arising from cloud computing,” in

Proc. 2010 IEEE Int’l Conf. Cloud Computing

Technology and Science, Nov.-Dec. 2010, pp. 693

.

[2] L. M. Vaquero, L. Rodero-Merino, and R.

Buyya, “Dynamically scaling applications in the

cloud,” ACM SIGCOMM Computer

Communication Review, vol. 41, no. 1, pp. 45–52,

2011.2168-7161 (c) 2013.

[3] L. Ferretti, M. Colajanni, and M. Marchetti,

“Distributed, concurrent, and independent access to

encrypted cloud databases,” IEEE Trans. Parallel

and Distributed Systems, vol. 25, no. 2, pp. 437–

446, 2014.

[4] R. A. Popa, C. M. S. Redfield, N. Zeldovich,

and H. Balakrishnan, “CryptDB: protecting

confidentiality with encrypted query processing,”

in Proc. 23rd ACM Symp. Operating Systems

Principles, Oct. 2011, pp. 85–100.

[5] E. Damiani, S. De Capitani di Vimercati, S.

Foresti, S. Jajodia, S. Paraboschi, and P. Samarati,

“Key management for multi-user encrypted

databases,” in Proc. ACM Workshop Storage

Security and Survivability, Nov. 2005, pp. 74 – 83.

[6] G. Wang, Q. Liu, J. Wu, and M. Guo,

“Hierarchical attribute-based encryption and

scalable user revocation for sharing data in cloud

servers,” Computers & Security, vol. 30, no. 5, pp.

320–331, 2011.

[7] M. R. Asghar, G. Russello, B. Crispo, and M.

Ion, “Supporting complex queries and access

policies for multi-user encrypted databases,” in

Proc. 2013 ACM Workshop on Cloud computing

security, Nov. 2013, pp. 77–88.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L.

Peterson, M. Wawrzoniak, and M. Bowman,

“Planetlab: an overlay testbed for broadcoverage

services,” ACM SIGCOMM Computer

Communication Review, vol. 33, no. 3, pp. 3–12,

2003.

[9] O. Goldreich, Foundations of Cryptography:

Volume 2, Basic Appli- cations. Cambridge

university press, 2004.

[10] H. Hacig¨um¨ us¸, B. Iyer, C. Li, and S.

Mehrotra, “Executing sql over encrypted data in

the database-service-provider model,” in Proc.

2002 ACM SIGMOD Int’l Conf. Management of

data, Jun. 2002, pp.216–227.

