
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142762 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 254

JAVA SECURITY
Ritu Yadav

Dronacharya College of Engineering
Khentawas, Haryana

Abstract :- Web browsers, Web servers, Java
application servers all are instances of Java
execution environments that run more or less
entrusted Java applications. In all these
environments, Java applications can come from
different sources. Consequently, the application
developers rarely know which other applications
exist in the target Java execution environment.
This paper investigates the requirements that
need to be imposed on such a container from a
security point of view and how the requirements
have been implemented by different Java
applications. More specifically, we show a
general risk analysis considering assets, threats
and vulnerabilities of a Java programming. This
risk analysis exposes generic Java security
problems and leads to a set of security
requirements. These security requirements are
then used to evaluate the security architecture of
existing Java programming for Java
applications, applets, servlets, and Enterprise
Java Beans. For comparison, the requirements
are also catechize for a C++ applications.

INTRODUCTION
Java security technology includes a large set of
APIs, tools, and implementations of commonly used
security algorithms, mechanisms, and protocols. The
Java security APIs spans a wide range of areas,
including cryptography, public key infrastructure,
and secures communication, authentication, and
access control. Java security technology provides
the developer with a comprehensive security
framework for writing applications, and also
provides the user or administrator with a set of tools
to securely manage applications. Underlying the
Java SE Platform is dynamic, extensible security
architecture, standards-based and interoperable.
Security features — cryptography, authentication
and authorization, public key infrastructure, and
more — are built in. The Java security model is
based on a customizable "sandbox" in which Java
software programs can run safely, without potential
risk to systems or users.

SECURITY FEATURES IN JAVA

The JVM
The binary form of programs running on the Java
platform is not native machine code but an
intermediate byte code.
The JVM performs verification on this byte code
before running it to prevent the program from
performing unsafe operations such as branching to
incorrect locations, which may contain data rather
than instructions. It also allows the JVM to enforce
runtime constraints such as array bounds checking.
This means that Java programs are significantly less
likely to suffer from memory safety flaws such
as buffer overflow than programs written in
languages such as C which do not provide such
memory safety guarantees.
The platform does not allow programs to perform
certain potentially unsafe operations such as pointer
arithmetic or unchecked type casts. It also does not
allow manual control over memory allocation and
DE allocation; users are required to rely on the
automatic garbage collection provided by the
platform. This also contributes to type safety and
memory safety.

SECURITY MANAGER

The platform provides a security manager which
allows users to run untrusted bytecode in a
"sandboxed" environment designed to protect them
from malicious or poorly written software by
preventing the untrusted code from accessing certain
platform features and APIs. For example, untrusted
code might be prevented from reading or writing
files on the local filesystem, running arbitrary
commands with the current user's privileges,
accessing communication networks, accessing the
internal private state of objects using reflection, or
causing the JVM to exit. The security manager also
allows Java programs to be cryptographically signed
users can choose to allow code with a valid digital
signature from a trusted entity to run with full
privileges in circumstances where it would
otherwise be untrusted.
Users can also set fine-grained access control
policies for programs from different sources. For
example, a user may decide that only system classes

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142762 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 255

should be fully trusted, that code from certain trusted
entities may be allowed to read certain specific files,
and that all other code should be fully sandboxed.

SECURITY APIs
The Java Class Library provides a number of APIs
related to security, such as
standard cryptographic algorithms, authentication,
and secure communication protocols.

JAVA SECURITY MODEL
The original security model provided by the Java
platform is known as the sandbox model, which
existed in order to provide a very restricted
environment in which to run untrusted code obtained
from the open network. The essence of the sandbox
model is that local code is trusted to have full access
to vital system resources (such as the file system)
while downloaded remote code (an applet) is not
trusted and can access only the limited resources
provided inside the sandbox. This sandbox model is
illustrated in the figure below.

The sandbox model was deployed through the Java
Development Kit (JDK), and was generally adopted
by applications built with JDK 1.0, including Java-
enabled web browsers.
Overall security is enforced through a number of
mechanisms. First of all, the language is designed to
be type-safe and easy to use. The hope is that the
burden on the programmer is such that the likelihood
of making subtle mistakes is lessened compared
with using other programming languages such as C
or C++. Language features such as automatic
memory management, garbage collection, and range
checking on strings and arrays are examples of how
the language helps the programmer to write safe
code. Second, compilers and a byte code verifier
ensure that only legitimate Java byte codes are
executed. The byte code verifier, together with the
Java Virtual Machine, guarantees language safety at
run time. Moreover, a class loader defines a local
name space, which can be used to ensure that an
untrusted applet cannot interfere with the running of

other programs. Finally, access to crucial system
resources is mediated by the Java Virtual Machine
and is checked in advance by a Security Manager
class that restricts the actions of a piece of untrusted
code to the bare minimum.

CONCLUSION
 Fine-grained access control.

This capability existed in the JDK from the
beginning, but to use it, the application writer had to
do substantial programming (e.g., by sub classing
and customizing the Security Manager and Class
Loader classes). The Hot Java browser 1.0 is such an
application, as it allows the browser user to choose
from a small number of different security levels.
However, such programming is extremely security-
sensitive and requires sophisticated skills and in-
depth knowledge of computer security. The new
architecture will make this exercise simpler and
safer.

 Easily configurable security policy.
Once again, this capability existed previously in the
JDK but was not easy to use. Moreover, writing
security code is not straightforward, so it is desirable
to allow application builders and users to configure
security policies without having to program.

 Easily extensible access control structure.
Up to JDK 1.1, in order to create a new access
permission, you had to add a new check method to
the Security Manager class. The new architecture
allows typed permissions (each representing an
access to a system resource) and automatic handling
of all permissions (including yet-to-be-defined
permissions) of the correct type. No new method in
the Security Manager class needs to be created in
most cases. (In fact, we have so far not encountered
a situation where a new method must be created.)

 Extension of security checks to all Java
programs, including applications as well as
applets.

There is no longer a built-in concept that all local
code is trusted. Instead, local code (e.g., non-system
code, application packages installed on the local file
system) is subjected to the same security control as
applets, although it is possible, if desired, to declare
that the policy on local code (or remote code) be the
most liberal, thus enabling such code to effectively
run as totally trusted. The same principle applies to
signed applets and any Java application.
Finally, an implicit goal is to make internal
adjustment to the design of security classes
(including the Security Manager and Class Loader

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142762 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 256

classes) to reduce the risks of creating subtle security
holes in future programming.

REFERANCES

 https://docs.oracle.com/javase/7/docs/te
chnotes/guides/security/spec/security-
spec.doc1.html

 http://www.oracle.com/technetwork/jav
a/javase/tech/index-jsp-136007.html

