
© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142711 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 308

STATEMENTS
Kashika grover

Computer science engineering,
Dronacharya college of engineering

ABSTRACT:- : this paper basically dals with the
topic : THE C PROGRAMMING. C language
programming is most one of important basic
curriculums for computer curriculum teaching
in science and engineering college.

INTRODUCTION
We present formal operational semantics for the C
programming language. This paper will basically
covers thestatements as well as the representation of
the c language.
Statement Classiv cation in C
there are six categories of statements in C:
1. Expression statements, which evaluate the

associated expression.
2. Selection statements (if and switch). 3. Iteration

statements (for, while, and do-while).
3. Iteration statements (for, while, and do-while).
4. Jump statements (goto, continue, break, and

return).
5. Labeled statements (case and default statements

used within the scope of a switch statement, and
targets of goto statements).
6. Compound statements, consisting of a (possibly

empty) list of local variable declarations and a
(possibly empty) list of statements.
Expression Statements
An expression statement has one of the following

forms:
expression-statement ! ; expression-statement !

expression ;
To execute an expression statement, evaluate the

attached expression (if any), even though the
resulting value will not be used. While this may
seem unnecessary, note that the evaluation of an
expression in C may generate side-e
ects (such as assigning a value to a variable). Note
also that the evaluation of an expression may not
halt. In this algebra, the evaluation of expressions is
handled by an external function TestValue: tasks !
results . Since expression statements perform no
additional work, the algebra simply proceeds to the
next task.
Selection Statements
There are two types of selection statements in C:

1.if statements

2.switch statements.
IF STATEMENT
An if statement has one of the following forms: if-
statement ! if (expression) statement1
if-statement ! if (expression) statement1 else.

statement2 where statement1 and statement2 are
statements.
switch Statements
The branching decision made in the if statement is

represented by an element of the tasks universe for
which the TaskType function returns branch.,
A switch statement has the following form:
switch-statement ! switch (expression) body

where body is a statement, usually compound.
Within the body of a switch statement there are
labeled case and default statements. Each case or
default is associated with the smallest enclosing
switch statement. To execute a switch statement,
evaluate the guard expression, and within the body
of the switch, transfer control to the case statement
for the switch whose labeled value matches the value
of the expression, or to the default statement for the
switch, whichever comes. If no such statement is
found, transfer control to the statement following the
switch statement.
While Statements
A while statement has the following form:
while-statement ! while (expression) body
where body is a statement. To execute a while

statement, keep evaluating the guard expression
until the value of the expression becomes zero. Each
time that the value of the guard expression is not
zero, execute body. Since the only types of tasks
used to represent while statements are the expression
and branch tasks. In such a situation, our abstract
machine would continue as if the loop had been
entered normally (i.e., after completion of the
statement body, control returns to the guard
expression to be evaluated). We nbelieve this is a
reasonable interpretation of such an event.
do-while Statements
A do-while statement has the following form:

do-while-statement ! do body while (expression) ;
where body is a statement.
do-while statements are identical to while

statements except that the guard expression and

© November 2015 | IJIRT | Volume 2 Issue 6 | ISSN: 2349-6002

IJIRT 142711 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 309

statement body are visited in the opposite order. As
with while loops, no new transition rules are
required to model the behavior of do-while
statements.
for Statements
The most complete form of the for statement is:
for-statement ! for (initializer ; test ; update) body

where test , and update are expressions, any of which
may be omitted, and body is a statement, usually
compound. We begin by describing the behavior and
representation of a for statement when all
expressions are present. In executing a for statement,
begin by evaluating the initializer. Evaluate the test
next; if the result is non-zero, execute the body and
evaluate the update (in that order) and re-evaluate
the test. If the value of the test is zero, transfer
control to the statement following the for loop.
Jump Statements
A jump statement has one of the following forms:
jump-statement ! goto identier ; jump-statement !
continue ; jump-statement ! break ; jump-statement
! return ; jump-statement ! return expression ;
Each of these jump statements is a command

indicating that control should be unconditionally
transferred to another task in the task graph:
goto statements :indicate directly the task to which

control passes.
continue statements may only occur within the

body of an iteration statement. For a given continue
statement C, let S be the smallest iteration statement
which includes C. Executing C transfers control to
the task within S following the statement body of S:
e.g., for for statements, control passes to the update
expression, while for while statements, control
passes to the guard expression.
break statements may occur within the body of an

iteration or switch statement. For a given break
statement B, let S be the smallest iteration or switch
statement which includes B. return statements
occur within the body of function abstractions,
indicating that the current function execution should
be terminated. A more complete discussion of return
statements will be presented in Algebra Four, where
function abstractions are presented. For now, we
assert that executing a return statement should set
CurTask to undef , which will bring a halt to the
algebra, since we only have one function (main)
being executed.
Labeled Statements
A labeled statement has one of the following forms:
labeled-statement ! identi er : statement ;

labeled-statement ! case constant-expression :
statement
labeled-statement ! default : statement
Statement labels identify the targets for control
transfer in goto and switch statement
Compound Statements
A compound statement has the following form:
compound-statemen- !{i f declaration-list statement-
list }
where the declaration and/or statement lists may be
empty.)
Since NextTask indicates the order in which tasks

are processed, we have no need for rules concerning
compound statements. Each statement or declaration
in a compound statement is linked to its successor
via NextTask . (Declarations are not treated until
Algebra Three; nonetheless, the same principle
holds for declaration tasks.)

