© 2014 IJIRT | Volume 1 Issue 10 | ISSN: 2349-6002 Design and Improvement of GSM Network in a Local Area

Miah Md. Asaduzzaman¹, Md. Rashedul Islam², Surajit Sinha³, Nawshad Ahmed Chowdhury⁴, Md. Rashadul Islam⁵ ^{1,2,3,4,5}Metropolitan University, Sylhet, Bangladesh. Radio Planning Technology Division, Grameenphone Limited,

Bangladesh.

Abstract— In this paper, a Global system for mobile communication (GSM) architecture for a certain area was analyzed. Then a problematic area under this GSM system in Bangladesh was detected. The cause of this problem was checked and found. The main problem was no network coverage at some points of the certain area taken under the GSM. Due to a greater no signal-coverage area, repeaters could not be used as a solution. So, a new Base Transceiver Station (BTS) had to be setup at the problematic area. For this, at first GSM plan was given and after that frequency plan for the new BTS was setup. Finally, the new BTS signal-coverage was checked and it was found that it successfully covered the whole problematic area.

Index Terms- GSM, TEMS, BTS, GSM Planning, MSC

I. INTRODUCTION

Global system for mobile communication (GSM) is a globally accepted standard for digital cellular communication. GSM is the name of a standardization group established in 1982 to create a common European mobile telephone standard that would formulate specifications for a pan-European mobile cellular radio system operating at 900 MHz. It is estimated that many countries outside of Europe will join the GSM partnership. [1]

II. GSM & RADIO NETWORK

GSM (Global System for Mobile Communications, originally Groupe Spécial Mobile), is a standard set developed by the European Telecommunications Standards Institute (ETSI) to describe technologies for second generation (2G) digital cellular networks. Developed as a replacement for first generation (1G) analog cellular networks, the GSM standard originally described a digital, circuit switched network optimized for full duplex voice telephony. The standard was expanded over time to include first circuit switched data transport, then packet data transport via GPRS (General Packet Radio services). Packet data transmission speeds were later increased via EDGE (Enhanced Data rates for GSM Evolution) referred as EGPRS. In this case, the problematic area of the GSM system was Ranikhali, Sylhet. The problem was solved and new frequency plan was given for the first time in this particular area of Bangladesh.[1]

A. GSM System Architecture

A GSM system consists of many components which can be properly understood by studying its architecture.For example, Ericsson provides two systems for GSM network.• MS Mobile Station = phone + SIM card. • BTS Base Transceiver Station (It contains the antenna system, radio frequency power amplifier & digital signal equipment). • BSC Base Station

Controller (control & supervises a number of RBS & radio connection in the system). • MSC Mobile services Switching Centre (responsible for setting up, routing & supervising call to & from the mobile suscriber). • GMSC Getway MSC (Interface between mobile network to other network such as PSTN or other mobile). • VLR Visitor Location Register (temporarily store information about the MS currently visiting its service area). • HLR Home Location Register (HLR database store & manage all mobile subscriptions belonging to a specify operator). • AUC Authentication Centre (integrated in HLR. The AUC provides to HLR authentication parameters & ciphering keys by generating triplets). • EIR Equipment Identity Register (check if any MS has been stolen or black listed). • NMC Network Management Center. • OMC Operation and Maintenance Center. • SMSC Short Message Service "Support" Centre. • VMS Voice Messaging System. • PrePaid Node Hosting prepaid service system. • IN Intelligent Network services. • PSTN Public Switched Telephone Network. • PABX Private Automatic Branch Exchange. [1]

B. Frequency Concepts

There are various kinds of frequency requirements and their related specifications in GSM. A GSM system must have uplink, downlink, wavelengths, bandwidth, duplex distance, carrier separation, radio channel, transmission rate etc.

The following table summarizes the frequency-related specifications of each of the GSM systems. The terms used in the table are not explained in the remainder of this section they are most common terms in communication, but these terms will be used in the upcoming sections frequently. [2]

Table 1: Frequency-related specifications

System	P-GSM 900	E-GSM 900
Frequencies	890-915	880-915 MHz
Uplink Downlink	MHz	925-960 MHz
	935-960	
	MHz	
Wavelength	~ 33 cm	~ 33 cm
Bandwidth	25 MHz	35 MHz
Duplex Distance	45 MHz	45 MHz
Carrier	200 kHz	200 kHz
Separation		
Radio Channels	125	175
Transmission	270 kbits/s	270 kbits/s
Rate		

C. Transmission Problems and Solution

Many problems may occur during the transmission of a radio signal. Some of the most common problems are path loss,

© 2014 IJIRT | Volume 1 Issue 10 | ISSN: 2349-6002

penetration loss, shadowing, multipath fading, Rayleigh fading, time dispersion and carrier to interference. This section describes some solutions to the problems. Although many of these do not entirely solve all problems on the radio transmission path, they do play an important part in maintaining call quality for as long as possible. [2]

Cell Planning means building a network able to provide service to the customer wherever they are. The cell planning is used to reduce problems with path loss, shadowing, cochannel interference and adjacent channel interference. [2]

In digital transmission, the quality of the transmitted signal is often expressed in terms of how many of the received bits are incorrect. This is called Bit Error Rate (BER). BER defines the percentage of the total number of received bits which are incorrectly detected. This percentage should be as low as possible. It is not possible to reduce the percentage to zero because the transmission path is constantly changing. This means that there must be an allowance for a certain amount of errors and at the same time an ability to restore the information, or at least detect errors so the incorrect information bits are not interpreted as correct. This is especially important during transmission of data, as opposed to speech, for which a higher BER is acceptable. Channel coding is used to detect and correct errors in a received bit stream. It adds bits to a message. These bits enable a channel decoder to determine whether the message has faulty bits, and to potentially correct the faulty bits. [2]

As mentioned previously, Rayleigh fading is frequency dependent. This means that the fading dips occur at different places for different frequencies. To benefit from this fact, it is possible for the BTS and MS to hop from frequency to frequency. [2]

Timing advance is a solution specifically designed to counteract the problem of time alignment. It works by instructing the miss-aligned MS to transmit its burst earlier or later than it normally would. In GSM, the timing advance information relates to bit times. Thus, an MS may be instructed to commence its transmission a certain number of bit times earlier or later, related to previous position, to reach its timeslot at the BTS in right time. Maximum 63 bit times can be used in standard GSM systems. This limits GSM normal cell size to 35km radius. However with extended range equipment, distances up to 70km or even 121km can be handled, using 2 timeslots and both speech and single slot GPRS are supported. Because 2 timeslots are required this results in a drop in the number of available channels in the cell by 50%. [2]

D. Different Site Solutions

Roof top [RT] Site: Usually in urban area
 Green Field [GF] Site: Usually in Rural area
 These two above type of sites may have the following solutions

a) 900MHz Site: for coverage, capacity and quality requirement

b) Collocation with1800MHz BTS: for capacity and quality requirement

c) 3rd cabinet with 1800Mhz BTS: for capacity requirement

Some other special case solutions in dense urban area:

a) IBS [In Building Solution]: For better coverage, capacity and quality.

b) MC [Micro cell]: To improve quality as well as capacity in the hot spot like traffic junction and road.

c) Repeater site: For better coverage and quality. Repeater cannot ensure capacity. [2]

III. BASE TRANSCEIVER STATION (BTS)

A Base Transceiver Station includes all radio and transmission interface equipment needed on site to provide radio transmission for one or several cells.

A. Ericsson BTS

Ericsson: one of Sweden's largest companies is a provider of telecommunication and data communication systems, and related services, covering a range of technologies, including especially mobile networks. Ericsson is currently the world's largest mobile telecommunications equipment vendor. [2]

B. Huawei BTS

Huawei (officially Huawei Technologies Co. Ltd.) is a Chinese multinational networking and telecommunications equipment and services company headquartered in Shenzhen, Guangdong, China. It is the largest China-based networking and telecommunications equipment supplier and the secondlargest supplier of mobile telecommunications infrastructure equipment in the world (after Ericsson). [6]

Indoor	Outdoor	Micro	Pico Cell
Macro	Macro	BTS	
BTS3012 BTS3900 BTS3900L DBS3900	BTS3900A	BTS3900E	BTS3900B BTS3900C

Table 2: Huawei BTS

IV. RADIO TOOLS (SOFTWARE):

To GSM network planning, optimization and frequency spectrum management solutions Mentum planet, TEMS Investigation, Fallows etc. are used. [4]

© 2014 IJIRT | Volume 1 Issue 10 | ISSN: 2349-6002

Table 3: Network Design Steps

#	Network design steps
1.	Site planning, Radio optimization
2.	Frequency planning, BSIC planning
3.	WR generation to other stake holder
4.	Used network performance data retrieval
5.	Capacity optimization for data & voice
6.	Real time voice and data quality check

V. GSM NETWORK DESIGN, IMPLEMENTATION & IMPROVEMENT

A. Statement of the problem:

As mobile subscribers complain we found a problematic area Ranikhali, Sylhet. [3]

Fig 1.0: Geographical view of Ranikhali

The summaries of Ranikhali area & radio network status were as follows:

Table 4: Information of Ranikhali area

Information Element	Number
Shops at bazaar	250
Population of Ranikhali village	5000

B. Network Status checking:

The coverage status is taken from the Idle Mood and the quality status is taken from the Dedicated Mood Drive test data. We have set acceptable threshold value for Rxlev Sub is -90dBm (In Car) and threshold value for Rxqual Sub is 5 (In Car).Throughout the drive test, we have found some problematic spots. Received signal's quality, coverage & event level in the following table. [9]

Table 5: Radio network Status at Ranikhali.

Information	Category	Value Range	Pre
RxQual Sub	Good	0 to 5	75.70%
KXQuai Sub	Bad	6 or above	24.30%
RxLev Sub	Good	0 to -90	77.70%
(dBm)	Bad	-91 or below	22.3 %

Table 6: Count of Events occurred (Active mode)

Event (Active Mode)	Pre (# of event)
Call Attempt	10
Call Attempt Retry	2
Dropped Call	5
Handover	22
Handover Failure	14
Intra-cell Handover	3
Intra-cell Handover Failure	0

Table 7: Count of Events occurred (Idle mode)

Event (Idle Mode)	Pre (# of event)
Call Reselection	28
Location Area Update	1
Location Area Update Failure	0

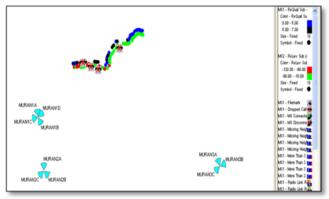


Fig 2.0: RxQual & RxLev Plot in TEMS Map

C. New Site Justification:

Site or GSM Antenna maximum height: MURAN1 24 meter, MURAN2 42 meter, MURAN3 42 meters. We also found some time out of coverage signal level also very poor. In this situation we need new site for better radio solution. [3]

New	Site	Criterion	Summ	nary	MURAN4
(Ranil	khali)				
Site to	Site Dis	stance		9.3 K	Km (Avg.)
Covera	age Plot			Poor	Coverage
Custor	ner Con	nplaints		Y	
Total	no of H	Bazaar in Ne	w Site	1 (Ve	ery Big)
Servin	g Area				
Affect	ed Subs	criber		3000	
Clutter	r Type			Popu	lated

Table 10: Neighbor Relation

D. GSM Planning:

For GSM Planning we use Mentum Planet Radio Network Tools. We plan a Green Field site of 42 meter height tower MURAN4 (Ranikhali).

Limitation:

- Every mobile operator has limited frequency. And BTS also support limited TRX or frequency
- Bangladesh Telecommunication Regulatory Commission (BTRC) controls every new BTS, GSM coverage & call setup access etc.

Table	<u>و</u>	New	site	GSM	Plan
raute	1.		SILC	ODIVI	1 Ian

Site Name	I	MURAN4	
Site Area	Ran	ikhali, Syl	het
Cell Name	Α	В	С
Cell ID	19011	19012	19013
Cell Type	UL1	UL1	UL1
Ant Model	739686	739686	739686
Ant Band	900	900	900
Dir (deg)	70	150	250
Polarization	Cross	Cross	Cross
Height(m)	40	35	40
Length(m)	2.25	2.25	2.25
Ant. M.Tilting (deg)	0	0	0
Ant. E.Tilting (deg)	2	2	2
TRU Config.	3	2	4
LAT		24 42 48	
LON		9135 16	
BTS Type		BTS3900	

Now that plan uploaded for other stake holder to build the site. [5]

E. Frequency planning:

We use 89 to 124 Frequencies for 900 Band.

- BCCH Frequency: 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117
- TCH Frequency: 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116 & 118 to 124

F. Cell planning by Fallows:

After complete the site we plan the cell frequency or parameter. We use Huawei BTS3900 with 6 MRFU. And one MRFU contain maximum 80w power & 6 TRx. For example we plan 4 TRx at C cell of MURAN4 site. So every TRx contain 80/4=20 wpower (80w/4)

Serving cell	NBR cell	Both Way
	MURAN4B	Yes
	MURAN4C	Yes
	MURAN1A	Yes
MURAN4A	MURAN1D	Yes
	MURAN2A	Yes
	MURAN3A	Yes
	MURAN4A	Yes
	MURAN4C	Yes
	MURAN1A	Yes
	MURAN1B	Yes
MURAN4B	MURAN1D	Yes
MUKAN4D	MURAN2A	Yes
	MURAN2B	Yes
	MURAN3A	Yes
	MURAN3B	Yes
	MURAN3C	Yes
	MURAN4A	Yes
	MURAN4B	Yes
	MURAN1A	Yes
	MURAN1B	Yes
	MURAN1C	Yes
MURAN4C	MURAN1D	Yes
	MURAN2A	Yes
	MURAN2B	Yes
	MURAN2C	Yes
	MURAN3A	Yes
	MURAN3C	Yes

© 2014 IJIRT | Volume 1 Issue 10 | ISSN: 2349-6002

Table 11: Cell Parameter

Site name	MURAN4		
Cell name	А	В	С
Band	900	900	900
BCCH	97	109	117
Cell	97,112,	100.04	117,120,
Frequency	122	109,94	90,110
NCC	2	2	2
BCC	2	3	4
CI	19011	19012	19013
SDCCH8	3	3	3
SDCCH			
Dynamic	Yes	Yes	Yes
Allocation			
SDCCH+CB	YES	VEC	YES
СН	TES	YES	
Frequency	BB	BB	BB
Hopping	ВВ		
HSN (900)	1	1	1
BSC	MU2012	MU2012	MU2012
TRX	3	2	4
MRFU Slot	0	2	4
Power Level	0	0	0
Power Type	20W	20W	20W
Power Fine	0	0	0
tune	0	0	0
FR Uplink	Shall Use	Shall Use	Shall Use
DTX	Shall Use		
HR Uplink	Shall Use	Shall Use	Shall Use
DTX	Shall Use		
FR Use			
Downlink	Yes	Yes	Yes
DTX			
HR Use			
Downlink	Yes	Yes	Yes
DTX			

Other stack holder built the site (Tower, BTS room, Power etc.). Now they declare the site is on air. Throughout the drive test, we have found good result. [4]

G. Comparison between Pre & Post Network Status:

Over all received signal's quality, coverage & event level status comparison of pre & post DT.

ruble 12. Ceomparison of receive signal				
Informat	Categ	Value	Pre	Post
ion	ory	Range		
RxQual Sub	Good	0 to 5	75.70%	99.60%
	Bad	6 or above	24.30%	0.40%
RxLev Sub (dBm)	Good	0 to - 90	77.70%	93.70%
	Bad	-91 or below	22.3 %	6.30%

Table 12: Ccomparison of receive signal

Table 13: Count of Events occurred (Active mode)

Event (Active Mode)	Pre (# of event)	Post (# of event)
Call Attempt	10	1
Call Attempt Retry	2	0
Dropped Call	5	0
Handover	22	5
Handover Failure	14	0
Intra-cell Handover	3	0
Intra-cell Handover Failure	0	0

Table 14: Count of Events occurred (Idle mode)

Event (Idle Mode)	Pre (# of event)	Post (# of event)
Call Reselection	28	8
Location Area Update	1	0
Location Area Update Failure	0	0

Table 15: Legend for RxQual & RxLev

	Element	Good	Bad
Legend	RxQual		
_	RxLev	0 to -90	91to -120

The improvement of quality & coverage spots is shown in the following picture.

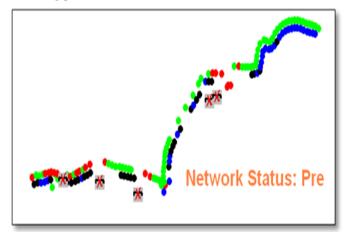


Fig 3.0: Pre Network Status

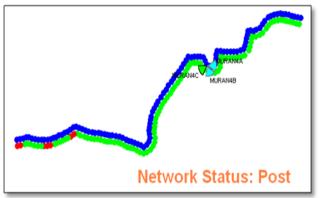


Fig 4.0: Post Network Status

VI. CONCLUSION:

Form the report; we see that the overall Radio network status at Ranikhali is excellent. We have achieved 93.7% good coverage area (where at pre DT we found some out of coverage area) and 99.6 % good quality samples in the village. [3]

Radio Coverage (RxLev Sub) Improvement is 16% (with 100% coverage), Radio Quality (RxQual) Improvement is 23.9% and for more improvement we need to do optimization & retuning.

REFERENCES:

- [1] Ericsson, GSM System Survey: EN/LZT 123 3321, Revision 5B, Ericsson Radio Systems AB, 2004
- [2] George Kennedy and Bernard Davis, Electronic Communication System, Fourth edition, McGraw-Hill, New Delhi, 1999
- [3] Grameenphone Ltd, Radio Planning, Technology Division, GPHouse, Baridhara, Dhaka-1229., Bangladesh
- [4] TEMS for Wireless Network Testing and Measurement http://www.ascom.com/en/index/group/divisions/netwo rk-testing-home.htm
- [5] Mentum–Innovative wireless network planning, management and optimization solutions for broadband networks http://www.mentum.com/
- [6] David M. Balston. The pan-European cellular technology. In R.C.V. Macario, editor, Personal and Mobile Radio Systems. Peter Peregrinus, London, 1991.
- [7] Michel Mouly and Marie-Bernadette Pautet, The GSM System for Mobile Communications. Published by the authors, 1992.
- [8] Ericsson A world of communication http://www.ericsson.com/
- [9] Radio Planning, Technology Division, Grameenphone Ltd. Bangladesh.